I have recently become suspicious of the real numbers. For nearly 3 decades I accepted their axiomatic existence as a complete, ordered archimedian field. The Dedekind-cut, and Cauchy sequence, and "infinite decimal" constructions all made sense to me.(adsbygoogle = window.adsbygoogle || []).push({});

And then I started reading about models of ZFC. And I became concerned. Perhaps the power set axiom really didn't say what I thought it did, at least not for the power set of a countably infinite set. If the collection of subsets that were members of a model of ZFC weren't *all* the possible subsets (perhaps I should use a different word than "subset" here, I'm not sure) of a given infinite set, then perhaps Cantor's proof only showed that a surjection from N to 2^{N}wasn't a function in our model.

The lack of an actual model for ZFC started to concern me, too. I feel...uncertain...as to what is allowed, and firm ground, and what is mere conjecture. I never worried overmuch about what structure might be large enough to contain all of ZFC, or whether or not a Grothendieck universe actually existed. I'm a simple person at heart, willing to leave some questions unanswered.

But this doubt....what does the Skolem paradox mean? What are these c.t.m. "extensions" M[G]? Levy collapse? How exactly does "forcing" work? Why are "generalized ultrafilters" so mysterious? I want to understand....and I'm a bit hesitant, too, at the same time. And, you just can't "do" topology without running into some of these questions.

Someone help me out, here...what's going on?

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Uncountable sets and forcing

**Physics Forums | Science Articles, Homework Help, Discussion**