1. Limited time only! Sign up for a free 30min personal tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Featured Other Undervalued books

  1. Dec 12, 2016 #1

    Demystifier

    User Avatar
    Science Advisor

    You know a book which is rarely cited, mentioned or recommended, quite unknown even to the experts, and yet you have discovered that this book is really great? Please share it with us!

    My example:
    H. Muirhead, The Physics of Elementary Particles
    - By style, quality and time of writing very comparable to the famous Bjorken and Drell's Relativistic Quantum Field Theory.
     
  2. jcsd
  3. Dec 12, 2016 #2

    dextercioby

    User Avatar
    Science Advisor
    Homework Helper

    x4 = ict, awful. Go home, throw this in the trash bin.
     
  4. Dec 12, 2016 #3
    Thermodynamics by Radu Paul Lungu. I did not read all of it, but I was impressed by the very precise and thorough of treatment of thermodynamics under electric and magnetic fields. There are many subtle points in this topic and this text is the only one I found that addressed many of these subtleties in a clean way.
     
  5. Dec 12, 2016 #4

    jasonRF

    User Avatar
    Science Advisor
    Gold Member

    Waves and Distributions by Jonsson and Yngvason from University of Iceland is a great little book designed to be used for a focused undergrad math methods course (advanced undergrad or beginning grad level in US). The title is perfectly chosen to give you the idea of the book. I really like chapters 4-6, which in 120 pages present a very concise version of distribution theory and Fourier analysis, then uses them consistently to analyze elementary problems in radiation, guided waves, and propagation in dispersive media. It is quite mathematical for a math methods book as it certainly requires undergraduate intro real analysis so freely uses [itex]\sup[/itex], etc., and assumes the associated maturity. A few passages are more abstract than I would prefer (radiation in N-dimensional space, etc) and it is probably not be the best place to learn most of the material for the first time (spherical harmonics, wave guides, Huygen's principle, etc.), but the way everything is threaded together in one place tells a story that is a treat to read. Chapter 6 on dispersive media is particularly good; I wish I had read it prior to taking any plasma physics.
     
  6. Dec 13, 2016 #5

    Demystifier

    User Avatar
    Science Advisor

    Well, I didn't say it's perfect. :biggrin:
     
  7. Dec 13, 2016 #6

    martinbn

    User Avatar
    Science Advisor

    Kostrikin, Manin "Linear Algebra and Geometry", I don't know if it is undervalued, but it seems to me that it isn't very popular. I found it very good.
     
  8. Dec 13, 2016 #7

    vanhees71

    User Avatar
    Science Advisor
    2016 Award

    The theory series in 6 volumes by Sommerfeld is rarely used nowadays, which is a pity since I think it's still one of the best and clearest assessments of classical theoretical physics, even after about 50-60 years (he's even so "modern" to use the SI units in electromagnetism and optics, which I personally see rarther as an disadvantage, but I'm quite lonely with this opinion either ;-)). Of course, also here the ict convention is used in relativity, but that's the only mishap but quite common at the time of writing.

    The same holds for the theory series (also in 6 volumes) by Pauli. It covers all classical physics (except mechanics), QM, and QFT. The latter, however, is completely outdated although it contains a thorough discussion about the various invariant functions like propagators, commutators, etc. in the time-position domain which are not found easily in modern books on the subject.
     
  9. Dec 13, 2016 #8

    MathematicalPhysicist

    User Avatar
    Gold Member

    Well, three years ago I started reading Schwinger's book on Source theory, first volume.

    I should come back to it one day and read it more carefully, I might also add a thread in QP subforum with questions on this three volume treatise.

    I am not sure how well do people know this book.
    Another book on Nuclear Physics from Judah Eisenberg and Walter Greiner's book, I started reading it last year; stopped with it a few months ago.
    I need someday find a time to read Cohen Tannoudji's - Zelevinsky's - Judah Eisenberg's;

    In Eisenberg's book obviously they assume knowledge of QM especially Clebsch-Gordan coeffcients, there appear there some nifty special functions such as Grinbauer special functions (I am not sure about the name, but I am sure it started with the letter 'G'), and some also interesting recusrion relations.

    Cool stuff!
    Edit: here is the special function:
    https://en.wikipedia.org/wiki/Gegenbauer_polynomials
     
    Last edited: Dec 13, 2016
  10. Dec 13, 2016 #9
    Why is it a good book?
     
  11. Dec 14, 2016 #10

    Demystifier

    User Avatar
    Science Advisor

    Because it is quite similar to Bjorken and Drell. If B&D is good (and many agree that it is), then so is this book.
     
  12. Dec 14, 2016 #11

    vanhees71

    User Avatar
    Science Advisor
    2016 Award

    Yes, Bjorken&Drell is the classic concerning QFT. Forget volume 1, but volume 2 is still a good source.
     
  13. Dec 14, 2016 #12

    MathematicalPhysicist

    User Avatar
    Gold Member

    Why forget Relativistic QM?

    How would people know how did we come to point C from point A without crossing through point B.

    What are the merits of forgetting Relativistic QM? I wonder.
     
  14. Dec 14, 2016 #13

    vanhees71

    User Avatar
    Science Advisor
    2016 Award

    The merit is that you don't need to bother with an inconsistent predecessor theory to modern QFT. It's only interesting in the sense of the history of science. To understand relativistic QT it rather confuses students more than it helps, and QFT is difficult enough. You won't need additional problems that are solved for decades now!
     
  15. Dec 14, 2016 #14

    MathematicalPhysicist

    User Avatar
    Gold Member

    I don't know really.

    In my university in the undergraduate QM2 we learnt of Relativistic QM (it was in 2010-2011), I assume pedagogically in my university they don't think like you.

    Are you sure that modern QFT isn't plagued with inconsistencies as well?:-)
     
  16. Dec 14, 2016 #15

    vanhees71

    User Avatar
    Science Advisor
    2016 Award

    Well, yes, there are inconsistencies, but much less than in a theory, where you claim to describe strictly one particle, only to resolv it by introducing a state of infinitely many particles whose existence is then handwaved away to then claim that only the holes in this sea of nonobservable particles are observable as antiparticles. Why should I teach my students such a confusing argument instead of starting right away with the many-body description of renormalized perturbative QFT and the Standard Model which is more successful in the description of all visible matter known today?
     
  17. Dec 14, 2016 #16

    Krylov

    User Avatar
    Science Advisor
    Education Advisor

    The only argument I can come up with is: Because it is an (epistemological) illustration of how theory develops.
    ?

    Please do not misunderstand me: For me this argument would probably not be convincing! (In my own field I generally find it very confusing when modern concepts are taught through discussion of their historical origins. Incidentally, one exception is the beautiful book on one-parameter semigroups by Engel & Nagel that develops the modern theory of operator semigroups for linear evolution equation starting from a discussion of the (scalar) exponential.)
     
  18. Dec 14, 2016 #17

    MathematicalPhysicist

    User Avatar
    Gold Member

    So @vanhees71 at your school where you teach, they don't teach relativistic QM?
     
  19. Dec 14, 2016 #18

    MathematicalPhysicist

    User Avatar
    Gold Member

    Hi @Krylov if I remember correctly you said once that your expertise lies in Control Theory, how well versed are you in this field?
    I might have in the future some questions from books in Control Theory so it will be good if I would have a correspondent, in my university there aren't a lot of experts in this field.
     
  20. Dec 15, 2016 #19

    Demystifier

    User Avatar
    Science Advisor

    There are other merits too.
    1) Solution of the Dirac equation (without QFT interpretation) gives the spectrum of the hydrogen atom, more accurately than the non-relativistic Schrodinger equation.
    2) The perturbative calculation of scattering amplitudes in string theory is better viewed as a generalization of Bjorken-Drell 1 than of Bjorken-Drell 2.
     
  21. Dec 15, 2016 #20

    vanhees71

    User Avatar
    Science Advisor
    2016 Award

    I once had to give the lecture Quantum Mechanics 2. There I taught right away QFT and not relativistic QM since I find relativistic QM more confusing than relativistic QFT which is the relativistic QT really working (and with great success) despite the quibbles you can have with it since the mathematical foundation for the interacting case is somewhat shaky. However it's the best theory we have, and it's the only form it's used in physics research today. I don't know, why I should teach an outdated intrinsically inconsistent concept. There's no application for it which cannot also be covered with QFT. In this QM 2 lecture I ended with the derivation of the Feyman rules for QED and the evaluation of the most important tree-level scattering processes. The students were very enthusiastic about is in their evaluation. Their only complaint was that they would have liked more relativistic QFT instead of the non-relativistic many-body theory, I had to cover within this lecture first :smile:.

    I also don't teach Aristotelian physics before I start with Newtonian mechanics or "old quantum mechanics", i.e., Bohr-Sommerfeld quantization or the wrong picture of photons a la Einstein 1905.
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?
Draft saved Draft deleted



Similar Discussions: Undervalued books
  1. Book recommendations (Replies: 4)

  2. Book indication (Replies: 9)

  3. Book recommendation (Replies: 4)

  4. Mathematics Books (Replies: 2)

Loading...