Uniform Convergence of nx/nx+1

  • Thread starter hmmmmm
  • Start date
  • #1
7
0

Main Question or Discussion Point

I am given [tex]f_n(x)=\frac{nx}{nx+1}[/tex] defined on [tex] [0,\infty) [/tex] and I have that the function converges pointwise to [tex] 0 \ \mbox{if x=0 and} 1\ \mbox{otherwise}[/tex]

Is the function uniform convergent on [tex] [0,1] [/tex]?

No. If we take x=1/n then [tex]Limit_{n\rightarrow\infty}|\frac{1/n*n}{1+1/n*n}-1|=0.5[/tex]

which implies that [tex]Limit_{n\rightarrow\infty} sup |f_n(x)-1|[/tex] is not 0.

I am then asked if it converges uniformly on the interval [tex](0,1][/tex] which I think it does but how do I show that [tex]Limit_{n\rightarrow\infty} sup |f_n(x)-1|[/tex]=0?

thanks for any help
 
Last edited by a moderator:

Answers and Replies

  • #2
mathman
Science Advisor
7,767
417
Your latex is screwed up.
 
  • #3
7
0
Yeah do you know why that is?

thanks for any help
 
  • #4
1,941
238
Yeah do you know why that is?

thanks for any help
don't put TEX in capitals.
 

Related Threads on Uniform Convergence of nx/nx+1

Replies
10
Views
91K
Replies
7
Views
2K
  • Last Post
Replies
6
Views
2K
  • Last Post
Replies
4
Views
3K
  • Last Post
Replies
6
Views
2K
Replies
2
Views
5K
Replies
3
Views
6K
Replies
2
Views
2K
  • Last Post
Replies
2
Views
1K
Top