Here is the question from the book:(adsbygoogle = window.adsbygoogle || []).push({});

----------

Let [itex]f: \mathbb{R} \to \mathbb{R}[/itex] be a function. For any [itex]a\in \mathbb{R}[/itex], let [itex]f_a :\mathbb{R}\to \mathbb{R}[/itex] be the shifted function [itex]f_a(x):=f(x-a)[/itex].

(a) Show that [itex]f[/itex] is continuous if and only if, whenever [itex](a_n)_{n=0}^{\infty}[/itex] is a sequence of real numbers which converges to zero, the shifted functions [itex]f_{a_n}[/itex] converge pointwise to [itex]f[/itex].

(b) Show that [itex]f[/itex] is uniformly continuous if and only if, whenever [itex](a_n)_{n=0}^{\infty}[/itex] is a sequence of real numbers which converges to zero, the shifted functions [itex]f_{a_n}[/itex] converge uniformly to [itex]f[/itex].

---------

[itex](\Rightarrow)[/itex] Let [itex]x_0 \in \mathbb{R}[/itex]. Suppose [itex]f[/itex] is continuous. That is, given [itex]\epsilon > 0[/itex] there exists [itex]\delta > 0[/itex] such that if [itex]|x-x_0| < \delta[/itex] then [itex]|f(x)-f(x_0)| < \epsilon[/itex].

Let [itex]x_n = x_0 - a_n[/itex]. So given [itex]\delta > 0[/itex] there exists [itex]N' > 0[/itex] such that [itex]|x_n - x_0|< \delta[/itex] for all [itex]n > N'[/itex].

Given [itex]\epsilon' > 0[/itex] take [itex]\epsilon = \epsilon'[/itex], and take [itex]N = N'[/itex].

So by the continuity of [itex]f[/itex] we get that [itex]|x_n - x_0| < \delta[/itex] for all [itex]n>N' = N[/itex].

Thus, [itex]|f(x_n) - f(x_0)| < \epsilon = \epsilon'[/itex].

But, [itex]f(x_n) = f(x_0-a_n) = f_{a_n}(x_0)[/itex] for all [itex]n>N[/itex].

So we have [itex]|f_{a_n}(x_0) - f(x_0)| < \epsilon[/itex] for all [itex]n>N[/itex].

Thus [itex]f_{a_n}[/itex] converges pointwise to [itex]f[/itex].

[itex](\Leftarrow)[/itex] Suppose given [itex]a_n \to 0[/itex] that [itex]f_{a_n}[/itex] converges pointwise to [itex]f[/itex]. Given [itex]x_0[/itex] take a sequence [itex]x_n[/itex] which converges to [itex]x_0[/itex]. That is, [itex]a_n = x_0 - x_n \to 0[/itex].

Since [itex]f_n[/itex] converges pointwise to [itex]f[/itex], given [itex]\epsilon > 0[/itex] there is some [itex]N>0[/itex] such that [itex]|f_{a_n}(x_0) - f(x_0)| < \epsilon[/itex] for all [itex]n>N[/itex].

But, [itex]|f_{a_n}(x_0) - f(x_0)| = |f(x_0 - a_n) - f(x_0)| = |f(x_n) - f(x_0)|[/itex].

Hence, [itex]|f(x_n) - f(x_0)| < \epsilon[/itex] for all [itex]n>N[/itex].

That is, [itex]f(x_n)[/itex] converges to [itex]f(x_0)[/itex]. Thus, [itex]f[/itex] is continuous.

----------

I don't think there is anything wrong with any of that (if there is, or you have any comments please say something).

However, I am not too sure about part (b).

The first direction is the same as in part (a), but the other direction I am not sure about.

I have been trying just the basic epsilon-delta definition way (similar to what I did in part (a) with this direction) and not really getting anywhere (which I guess could be expected since we don't have a uniform continuity definition with sequences [at least in our book]).

Any ideas? Thanks!

edit... I am converting the $ signs to [itex]'s. Is there an easy (fast and painless) way to do this?

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Uniform Convergence

**Physics Forums | Science Articles, Homework Help, Discussion**