Let [tex]f:]a,b[\to\mathbb{R}[/tex] be a differentiable function. For each fixed [tex]x\in ]a,b[[/tex], we can define a function(adsbygoogle = window.adsbygoogle || []).push({});

[tex]

\epsilon_x: D_x\to\mathbb{R},\quad\quad \epsilon_x(u) = \frac{f(x+u) - f(x)}{u} \;-\; f'(x)

[/tex]

where

[tex]

D_x = \{u\in\mathbb{R}\backslash\{0\}\;|\; a < x+u < b\}.

[/tex]

Now we have [tex]\epsilon_x(u)\to 0[/tex] when [tex]u\to 0[/tex] for all [tex]x[/tex], but let us then define a following collection of functions for all [tex]|u|<b-a[/tex].

[tex]

\epsilon_u:E_u\to\mathbb{R},\quad\quad \epsilon_u(x) = \epsilon_x(u)

[/tex]

where

[tex]

E_u = \{x\in ]a,b[\;|\; a < x + u < b\}.

[/tex]

For all [tex]\delta > 0 [/tex] there exists [tex]U>0[/tex] so that [tex]]a+\delta, b-\delta[\subset E_u[/tex] when [tex]|u| < U[/tex]. So now it makes sense to ask, that under which conditions does the collection [tex]\epsilon_u|_{]a+\delta, b-\delta[}[/tex] approach zero uniformly when [tex]u\to 0[/tex], for all [tex]\delta > 0 [/tex]?

For example, could f being continuously differentiable be enough?

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Uniform differentiability

**Physics Forums | Science Articles, Homework Help, Discussion**