Well, again I'm a bit stuck.(adsbygoogle = window.adsbygoogle || []).push({});

I have to prove that the metrics d1, dp (where p is from <1, ∞>) and d∞ in R^n are uniformly equivalent. The metrics are given with:

d1(a, b) = ∑|ai - bi|

dp(a, b) = (∑|ai - bi|^p)^(1/p)

d∞(a, b) = max{|ai - bi|, i = 1, ... ,n} (of course, the sums are ranging from 1 to n)

The relation of uniform equivalence between metrics is an equivalence relation, so if d1 ~ d∞ and d1 ~ dp, then dp ~ d∞.

I have shown that d1 ~ d∞, but I am stuck with showing that d1 ~ dp, and would be most grateful for a push here.

**Physics Forums | Science Articles, Homework Help, Discussion**

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Uniformly equivalent metrics

**Physics Forums | Science Articles, Homework Help, Discussion**