- #1

- 44

- 0

## Homework Statement

Prove that in

**R**[itex]^{n}[/itex], the euclidean metric, the d[itex]_{\infty}[/itex]=max{|a1-b1|,...,|a[itex]_{n}[/itex]}-b[itex]_{n}[/itex]|}, and d = |a1-b1|+...|a[itex]_{n}[/itex]}-b[itex]_{n}[/itex]|.

## Homework Equations

Uniform Equivalence: basically p,d so that we have the two inequalities with some constants like p(x,y)[itex]\leq[/itex]Ad(x,y) and d(x.y)[itex]\leq[/itex]Bp(x,y).

Schwarz inequality.

## The Attempt at a Solution

I was going to do this in straightforward manner but when we go to see what our constants are, they turn out to n or [itex]\infty[/itex]. I don't know what to do. Can we treat them as coefficients in the two respective ineqaulities?