Hey all,(adsbygoogle = window.adsbygoogle || []).push({});

I was working a little on parabolic pde, and came across this (comes up in regularity theory). Consider a Hilbert triple [itex]V\subset H\subset V^*[/itex] (continuous embeddings) and a linear operator [itex]A(t)[/itex] from V to V*, where t ranges in some interval [0,T]. Now let [itex]w\in H^1(0,T;V^*)\cap L^2(0,T;V)[/itex] solve

[tex]w'=A(t)w-\int_0^t A'(\tau)w(\tau) d\tau, \quad w(0)=0 [/tex].

I want to show that this implies w=0. How could I do that?

I tried multiplying by w and integrating by parts, which results in

[tex] 1/2 (w,w) +\int_0^t a(s,w(s),w(s))ds= -\int_0^t (\int_0^s A(\tau)w(\tau d\tau,w(s))ds,[/tex]

where a(s,w(s),w(s)) is the induced quadratic form satisfying [itex] a(s,w(s),w(s))\geq \alpha ¦w(s)¦_V-\beta ¦w(s)¦_H[/itex] for constants >0, uniformly in t. How does this help me?

Best regards...cliowa

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Uniqueness for ode coming from parabolic pde

Can you offer guidance or do you also need help?

Draft saved
Draft deleted

**Physics Forums | Science Articles, Homework Help, Discussion**