Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

A Unitary matrix

  1. May 1, 2017 #1
    Relations between vectors in cylindrical and
    Cartesian
    coordinate systems are given by
    [tex]\vec{e}_{\rho}=\cos \varphi \vec{e}_x+\sin \varphi \vec{e}_y[/tex]
    [tex]\vec{e}_{\varphi}=-\sin \varphi \vec{e}_x+\cos \varphi \vec{e}_y [/tex]
    [tex] \vec{e}_z=\vec{e}_z [/tex]
    We can write this in form
    [tex]
    \begin{bmatrix}
    \vec{e}_{\rho} \\[0.3em]
    \vec{e}_{\varphi} \\[0.3em]
    \vec{e}_z \\[0.3em]


    \end{bmatrix}
    =\begin{bmatrix}
    \cos \varphi & \sin \varphi & 0 \\[0.3em]
    -\sin \varphi & \cos \varphi & 0 \\[0.3em]
    0 & 0 & 1 \\[0.3em]


    \end{bmatrix}
    \begin{bmatrix}
    \vec{e}_x \\[0.3em]
    \vec{e}_y \\[0.3em]
    \vec{e}_z \\[0.3em]


    \end{bmatrix}
    [/tex]
    where matrix ##
    \begin{bmatrix}
    \cos \varphi & \sin \varphi & 0 \\[0.3em]
    -\sin \varphi & \cos \varphi & 0 \\[0.3em]
    0 & 0 & 1 \\[0.3em]


    \end{bmatrix}## is orthogonal. Then means that norms of the vectors ##
    \begin{bmatrix}
    \vec{e}_x \\[0.3em]
    \vec{e}_y \\[0.3em]
    \vec{e}_z \\[0.3em]


    \end{bmatrix}## and
    ##
    \begin{bmatrix}
    \vec{e}_{\rho} \\[0.3em]
    \vec{e}_{\varphi} \\[0.3em]
    \vec{e}_z \\[0.3em]


    \end{bmatrix}## are the same. But how to define norm of vector
    ##\begin{bmatrix}
    \vec{e}_{\rho} \\[0.3em]
    \vec{e}_{\varphi} \\[0.3em]
    \vec{e}_z \\[0.3em]


    \end{bmatrix}##?
     
  2. jcsd
  3. May 4, 2017 #2

    BvU

    User Avatar
    Science Advisor
    Homework Helper
    Gold Member

    What is it you are saying here ? Because what you describe is the cartesian coordinates after a rotation over an angle ##\phi## around the z-axis. A vector ##(a,b,c)## in cartesian coordiates is not identical to a vector ##(\rho, \phi, z)## in cylindrical coordinates with ##\rho = a\cos\phi+b\sin\phi\,,\ \ ## etc
     
  4. May 4, 2017 #3

    BvU

    User Avatar
    Science Advisor
    Homework Helper
    Gold Member

    Generally: norm squared of ##\,\vec v\ \ ## is ##\ \ \vec v\cdot\vec v## .
    Since the angle between a vector and itself is zero, this is pretty easy:
    In cylindrical coordinates ##\sqrt{\rho^2+z^2\ }\ ## and for spherical coordinates simply ##r##.

    For the inner product in general you need the angle between the two vectors. Probably easiest to first convert to cartesian coordinates and work it out for the various coordinate systems.
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?
Draft saved Draft deleted



Similar Discussions: Unitary matrix
Loading...