Units of Force Constant

  • Thread starter Lamebert
  • Start date
  • #1
39
1

Homework Statement


A molecule is a harmonic oscillator, and has a fundamental frequency of 1000 cm−1 and a reduced mass of 10.0 amu. From this, determine the magnitude of the force constant, and express it in units of aJ ˚A−2 (atto joules per angstrom).

Homework Equations


ω=√(k/mr)

The Attempt at a Solution



My question is about the requested units. Force constants of harmonic oscillators are given as force*distance, no? So the request for the units in energy/distance2 doesn't make sense. Further, using the relevant equation given I end up with amu/cm2, or mass/distance2. I suppose wavenumbers can be counted as energy as well. Even then, you'd end up with J^2*amu or J*amu/cm. The problem, then, is the remaining mass. I'm fairly certain I'm misunderstanding something in this, however. Any help would be appreciated.

Edit: Apologies for having to move my thread. This is this first part of a multistep quantum mechanical problem. I guess this part is technically more introductory.
 
Last edited:

Answers and Replies

  • #2
vela
Staff Emeritus
Science Advisor
Homework Helper
Education Advisor
15,141
1,736
No. The force constant is ##k## as in ##F=-kx## in Hooke's law.
 
  • #3
39
1
No. The force constant is ##k## as in ##F=-kx## in Hooke's law.
Sorry, I meant force/distance. My question still stands.
 
  • #4
vela
Staff Emeritus
Science Advisor
Homework Helper
Education Advisor
15,141
1,736
Energy has units of force times distance, so…
 
  • #5
39
1
Energy has units of force times distance, so…

I know but the problem is the units of this problem itself. I need the units to be in energy/distance^2 which is proper but the output of the equation includes mass and energy (amu and wavenumbers^2) which, from what I can tell, can't be converted to any form of a force constant, which is why I'm sure I'm doing something wrong.

Pulling apart the given equation, it tells us that k = ω2mr. Omega is in wave numbers which is an energy unit, and mr is a reduced mass in units of amu. So E2* mass (from the equation) should be equal to energy/distance2 (from the requested unit in the problem). This is clearly not true, unless Energy is equal to inverse distance2 times mass.
 
  • #6
vela
Staff Emeritus
Science Advisor
Homework Helper
Education Advisor
15,141
1,736
Sorry, I didn't notice the non-standard units for the frequency. That seems like a typo, where it should say the units are s-1, or you're supposed to follow some sort of convention like mapping wave numbers to frequency via a relation like ##c = \omega k##.
 
  • #8
39
1
From reading http://quantum.bu.edu/notes/QuantumMechanics/HarmonicOscillator.pdf, I gather 1000 cm-1 refers to the reciprocal wavelength ##\tilde{\nu} = 1/\lambda = \nu/c##, where ##\nu## is the frequency in Hz and ##c## is the speed of light.

So, in other words, your suggestion is multiplying wavenumbers by the speed of light, which will result in a normal frequency (s-1). Even if this is done, I end up with mass/s2 which is... force/distance I guess, which is correct.

Ok, cool. Thanks.
 
  • #9
39
1
From reading http://quantum.bu.edu/notes/QuantumMechanics/HarmonicOscillator.pdf, I gather 1000 cm-1 refers to the reciprocal wavelength ##\tilde{\nu} = 1/\lambda = \nu/c##, where ##\nu## is the frequency in Hz and ##c## is the speed of light.
Hmm, one more question. The final answer I get is in units of kg/s2. It's true that, when the distances are cancelled in the final unit requested in the problem, that these units are correct. How do I apply these distances to the number? For instance, let's say I got 1 kg/s2. Can I just multiply it by 1 meter2 for sake of unit conversion to get to joule, and divide 10-20 for the angstrom part?
 

Related Threads on Units of Force Constant

  • Last Post
Replies
3
Views
5K
  • Last Post
Replies
4
Views
4K
  • Last Post
Replies
6
Views
2K
  • Last Post
Replies
3
Views
6K
Replies
2
Views
8K
Replies
15
Views
63K
Replies
4
Views
276
  • Last Post
Replies
4
Views
2K
  • Last Post
Replies
1
Views
3K
  • Last Post
Replies
5
Views
2K
Top