Universal Gravitation

  • Thread starter kim3648
  • Start date
  • #1
kim3648
4
0
Neutron stars are extremely dense objects that are formed from the remnants of supernova explosions. Many rotate very rapidly. Suppose that the mass of a certain spherical neutron star is twice the mass of the Sun and its radius is 5.0 km. Determine the greatest possible angular speed it can have so that the matter at the surface of the star on its equator is just held in orbit by the gravitational force.

First I would find escape velocity
https://www.physicsforums.com/latex_images/11/112728-0.png [Broken]
And using that velocity as the tangent I could find the angular velocity? Is that a correct assumption?
 
Last edited by a moderator:

Answers and Replies

  • #2
dwintz02
60
0
Hmm, this problem is a little tricky in disguise. If matter at the equator is JUST held on my gravity, that means the object is ALMOST weightless. Use a force balance and set that equal to m*centripedal acceleration and then ask yourself what it means to be weightless. Where does that get you?
 
  • #3
kim3648
4
0
I think you have my question confused with that of the person below me !
 
  • #4
dwintz02
60
0
That's interesting. I think you have your question confused with another one! No, but really...you can do your problem either way. It's just easier the way I said in my opinion.
 
  • #5
Shooting Star
Homework Helper
1,982
4
First I would find escape velocity
https://www.physicsforums.com/latex_images/11/112728-0.png [Broken]
And using that velocity as the tangent I could find the angular velocity? Is that a correct assumption?

It's not necessary here to find escape velo. The force due to gravity should be equal to the centrifugal force at the equator. The same as dwintz02 said.
 
Last edited by a moderator:
  • #6
Shooting Star
Homework Helper
1,982
4
That's interesting. I think you have your question confused with another one! No, but really...you can do your problem either way. It's just easier the way I said in my opinion.

He can't do it using escape velocity.
 

Suggested for: Universal Gravitation

  • Last Post
Replies
7
Views
587
Replies
5
Views
469
Replies
5
Views
926
Replies
3
Views
586
  • Last Post
Replies
16
Views
809
  • Last Post
Replies
12
Views
504
Replies
10
Views
1K
  • Last Post
Replies
3
Views
431
Top