Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Universe mass

  1. May 28, 2008 #1

    This is my equation for the Universe mass based upon the Lambda-CDM model parameters and the Hubble Space Telescope (HST) and WMAP observational parameters in SI units.

    Observable Universe mass composition:
    [tex]H_0 = 2.32987690448613 \cdot 10^{- 18} \; \text{s}^{- 1}[/tex] - Hubble parameter (WMAP)
    [tex]\Omega_b = 0.00444[/tex] - Baryon density
    [tex]\Omega_{dm} = (\Omega_m - \Omega_b) = 0.2216[/tex] - dark matter density
    [tex]dN_s = 10^{22}[/tex] - HST observable stellar number
    [tex]dV_s = 3.3871 \cdot 10^{78} \; \text{m}^3 \; \; \; (4 \cdot 10^{30} \; \text{ly}^3)[/tex] - HST observable stellar volume
    [tex]M_{\odot} = 1.9891 \cdot 10^{30} \; \text{kg}[/tex] - solar mass

    Observable Universe mass:
    [tex]\boxed{M_u = \frac{4 \pi M_{\odot}}{3 \Omega_b} \left( \frac{dN_s}{dV_s} \right) \left( \frac{c}{H_0} \right)^3}[/tex]

    [tex]\boxed{M_u = 1.18029735794067 \cdot 10^{55} \; \text{kg}}[/tex]

    Gravitationally observable dark matter mass:
    [tex]\boxed{M_{dm} = \frac{4 \pi M_{\odot}}{3} \left( \frac{\Omega_{dm}}{\Omega_b} \right) \left( \frac{dN_s}{dV_s} \right) \left( \frac{c}{H_0} \right)^3}[/tex]

    [tex]\boxed{M_{dm} = 2.61553894519654 \cdot 10^{54}}[/tex]

    Hubble critical mass:
    [tex]\boxed{M_c = \frac{c^3}{2 G H_0}}[/tex]
    [tex]\boxed{M_c = 8.66352589042757 \cdot 10^{52} \; \text{kg}}[/tex]

    Reference:
    Hubble's law - Wikipedia
    Lambda-CDM_model - Wikipedia
    Universe - Wikipedia
    Observable universe - Wikipedia
    Dark matter - Wikipedia
     
    Last edited: May 28, 2008
  2. jcsd
  3. May 28, 2008 #2

    Correction, the Baryon density listed in post #1 is the stellar Baryon density, not the total Baryon density.

    The stellar Baryon density ranges between:
    [tex]\Omega_s = \int_{0.004}^{0.005}[/tex]
     
    Last edited: May 28, 2008
  4. May 28, 2008 #3

    [tex]\Omega_s = 0.005[/tex] - stellar Baryon density

    Observable Universe mass:
    [tex]\boxed{M_u = \frac{4 \pi M_{\odot}}{3 \Omega_s} \left( \frac{dN_s}{dV_s} \right) \left( \frac{c}{H_0} \right)^3}[/tex]

    [tex]\boxed{M_u = 1.04810405385132 \cdot 10^{55} \; \text{kg}}[/tex]

    Gravitationally observable dark matter mass:
    [tex]\boxed{M_{dm} = \frac{4 \pi M_{\odot}}{3} \left( \frac{\Omega_{dm}}{\Omega_s} \right) \left( \frac{dN_s}{dV_s} \right) \left( \frac{c}{H_0} \right)^3}[/tex]

    [tex]\boxed{M_{dm} = 2.32259858333452 \cdot 10^{54} \; \text{kg}}[/tex]

    Hubble critical mass:
    [tex]\boxed{M_c = \frac{c^3}{2 G H_0}}[/tex]

    [tex]\boxed{M_c = 8.66352589042757 \cdot 10^{52} \; \text{kg}}[/tex]
     
  5. Jun 5, 2008 #4

    Observable Universe mass greater than or equal to Hubble critical mass:
    [tex]\boxed{M_u \geq M_c}[/tex]

    [tex]\boxed{\frac{4 \pi M_{\odot}}{3 \Omega_s} \left( \frac{dN_s}{dV_s} \right) \left( \frac{c}{H_0} \right)^3 \geq \frac{c^3}{2 G H_0}}[/tex]

    Observable Universe mass equivalent to Hubble critical mass:
    [tex]\boxed{M_u = M_c}[/tex]

    [tex]\frac{4 \pi M_{\odot}}{3 \Omega_s} \left( \frac{dN_s}{dV_s} \right) \left( \frac{c}{H_0} \right)^3 = \frac{c^3}{2 G H_0}[/tex]

    Observable critical stellar Baryon density:
    [tex]\boxed{\Omega_s = \frac{8 \pi G M_{\odot}}{3 H_0^2} \left( \frac{dN_s}{dV_s} \right)}[/tex]

    [tex]\boxed{\Omega_s = 0.604894627838177}[/tex]

    Total matter density:
    [tex]\Omega_m = 0.266[/tex]

    According to my calculations, the observable Universe mass is greater than the Hubble critical mass.

    What exactly are the cosmological theoretical implications for this criteria?
     
    Last edited: Jun 5, 2008
  6. Jun 5, 2008 #5

    Observable stellar Baryon critical density:
    [tex]\Omega_s = 0.604894627838177[/tex]

    Observable cosmological critical density:
    [tex]\Omega_{\Lambda} = 0.7[/tex]

    Reference:
    Lambda-CDM model - Wikipedia
     
  7. Jul 1, 2008 #6

    malawi_glenn

    User Avatar
    Science Advisor
    Homework Helper

    Why don't you google 'Hubble critical mass' and publish 'your' results in an article?
     
  8. Nov 28, 2008 #7

    All my equations require proofreading by a peer review, prior to any publication.

    According to my calculations, the observable Universe mass is greater than the Hubble critical mass.

    What exactly are the theoretical cosmological implications for this criteria?

    Are my equations and calculations correct?
     
    Last edited: Nov 28, 2008
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?



Similar Discussions: Universe mass
  1. Mass of universe (Replies: 4)

  2. Mass of the universe (Replies: 37)

  3. Mass of the universe? (Replies: 32)

  4. Mass of universe (Replies: 1)

Loading...