Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Upper bound of taylor !

  1. Sep 5, 2011 #1
    upper bound of taylor!!!!!!

    [itex]f(x)[/itex] is two times diff. function on [itex](0, \infty)[/itex] . [itex]\lim\limits_{x\rightarrow \infty}f(x) = 0[/itex] satisfy.
    [itex]M=\sup\limits_{x>0}\vert f^{\prime \prime} (x) \vert[/itex] satisfy
    . for each integer [itex]L[/itex] ,
    [itex]g(L) = \sup\limits_{x\geq L} \vert f(x) \vert[/itex], and [itex]h(L) = \sup\limits_{x\geq L} \vert f^{\prime}(x) \vert[/itex]. for any [itex] \delta > 0[/itex], SHOW

    [itex]h(L) \leq \dfrac{2}{\delta} g(L) + \dfrac{\delta}{2}M[/itex].

    please helppppp...
    Last edited: Sep 6, 2011
  2. jcsd
  3. Sep 6, 2011 #2
    Re: upper bound of taylor!!!!!!

    So, what did you try already??
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook