Upper bound of taylor !

  • Thread starter burak100
  • Start date
  • #1
33
0
upper bound of taylor!!!!!!

[itex]f(x)[/itex] is two times diff. function on [itex](0, \infty)[/itex] . [itex]\lim\limits_{x\rightarrow \infty}f(x) = 0[/itex] satisfy.
[itex]M=\sup\limits_{x>0}\vert f^{\prime \prime} (x) \vert[/itex] satisfy
. for each integer [itex]L[/itex] ,
[itex]g(L) = \sup\limits_{x\geq L} \vert f(x) \vert[/itex], and [itex]h(L) = \sup\limits_{x\geq L} \vert f^{\prime}(x) \vert[/itex]. for any [itex] \delta > 0[/itex], SHOW

[itex]h(L) \leq \dfrac{2}{\delta} g(L) + \dfrac{\delta}{2}M[/itex].

please helppppp...
 
Last edited:

Answers and Replies

  • #2
22,089
3,286


So, what did you try already??
 

Related Threads on Upper bound of taylor !

  • Last Post
Replies
18
Views
5K
Replies
8
Views
2K
  • Last Post
Replies
2
Views
6K
  • Last Post
Replies
5
Views
2K
  • Last Post
Replies
5
Views
5K
  • Last Post
Replies
6
Views
2K
  • Last Post
Replies
18
Views
4K
Replies
1
Views
5K
Replies
1
Views
2K
Top