- #1

- 15

- 0

You are using an out of date browser. It may not display this or other websites correctly.

You should upgrade or use an alternative browser.

You should upgrade or use an alternative browser.

- Thread starter christianpoved
- Start date

- #1

- 15

- 0

- #2

- 15,393

- 686

As a starter, one that you are already very well familiar with is angular velocity.

- #3

- 16

- 0

- #4

atyy

Science Advisor

- 14,362

- 2,602

http://www.math.cornell.edu/~goldberg/Talks/Flows-Olivetti.pdf

http://rigtriv.wordpress.com/2007/10/01/parallel-parking/

The Lie derivative is also used to define Killing vectors in general relativity. For a free falling test particle (ie. under no forces except gravity = spacetime curvature), the Killing vectors give conserved quantities along the particle's trajectory.

http://ned.ipac.caltech.edu/level5/March01/Carroll3/Carroll5.html

- #5

WannabeNewton

Science Advisor

- 5,800

- 536

In general relativity, a vector field ##\xi## in a space-time ##(M,g)## that preserves the metric tensor ##g## is exactly one which satisfies ##\mathcal{L}_{\xi}g = 0## where ##\mathcal{L}_{\xi}## is the Lie derivative along ##\xi##; such a vector field is called a killing field.

As an example, take ##M = \mathbb{R}^{4}## and ##g = \eta## where ##\eta## is the Minkowski metric i.e. we are in Minkowski space-time. Then the vector fields solving ##\mathcal{L}_{\xi}\eta = 0## are given by ##\xi = AX + T##. It can be shown that ##T## is the generators of translations in Minkowski space-time and that ##A## is the generator of Lorentz transformations (i.e. Lorentz boosts and spatial rotations).

Further more, in general relativity a freely falling particle satisfies the equations of motion ##\nabla_u u = 0## where ##\nabla## is the Levi-Civita connection associated with the metric tensor ##g## of the space-time, and ##u## is the 4-velocity of the particle. If ##\xi## is a killing field then ##\nabla_u (u \cdot \xi) = \xi \cdot \nabla_u u + u \cdot \nabla_u \xi = 0## so ##u \cdot \xi## is a conserved quantity along the freely falling particle's worldline. For example if ##\xi## generates time translations then ##u \cdot \xi## represents the conserved energy of the freely falling particle.

As an example, take ##M = \mathbb{R}^{4}## and ##g = \eta## where ##\eta## is the Minkowski metric i.e. we are in Minkowski space-time. Then the vector fields solving ##\mathcal{L}_{\xi}\eta = 0## are given by ##\xi = AX + T##. It can be shown that ##T## is the generators of translations in Minkowski space-time and that ##A## is the generator of Lorentz transformations (i.e. Lorentz boosts and spatial rotations).

Further more, in general relativity a freely falling particle satisfies the equations of motion ##\nabla_u u = 0## where ##\nabla## is the Levi-Civita connection associated with the metric tensor ##g## of the space-time, and ##u## is the 4-velocity of the particle. If ##\xi## is a killing field then ##\nabla_u (u \cdot \xi) = \xi \cdot \nabla_u u + u \cdot \nabla_u \xi = 0## so ##u \cdot \xi## is a conserved quantity along the freely falling particle's worldline. For example if ##\xi## generates time translations then ##u \cdot \xi## represents the conserved energy of the freely falling particle.

Last edited:

- #6

- 15

- 0

Wow, thanks everybody for the examples, everything seems useful now!

- #7

WannabeNewton

Science Advisor

- 5,800

- 536

- #8

- 15

- 0

Share: