1. Not finding help here? Sign up for a free 30min tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Using a Power Series to Approximate a Definite Integral

  1. Oct 27, 2004 #1
    I think I got pretty close to the answer to this problem. However, I just can't obtain the right approximation at the end. Please, help me find where I made a mistake.

    Thanks.

    --------------------------------------------------------------

    Use a power series to approximate the definite integral to six decimal places.

    [tex] \int _0 ^{1/3} x^2 \arctan \left( x^4 \right) dx [/tex]

    --------------------------------------------------------------

    [tex] \frac{d}{dx} \left[ \arctan \left( x^4 \right) \right] = \frac{4x^3}{1+x^8} [/tex]

    [tex] \frac{1}{1+x^8}=\frac{1}{1-\left( -x^8 \right) } = \sum _{n=0} ^{\infty} \left( -x^8 \right) = \sum _{n=0} ^{\infty} \left( -1 \right) ^n x^{8n} [/tex]

    [tex] \frac{d}{dx} \left[ \arctan \left( x^4 \right) \right] = 4 \sum _{n=0} ^{\infty} \left( -1 \right) ^n x^{8n+3} [/tex]

    [tex] \arctan \left( x^4 \right) = 4 \sum _{n=0} ^{\infty} \int \left( -1 \right) ^n x^{8n+3} dx = \mathrm{C} + \sum _{n=0} ^{\infty} \frac{\left( -1 \right) ^n x^{8n+4}}{8n+4} [/tex]

    [tex] x^2 \arctan \left( x^4 \right) dx = \mathrm{C} + \sum _{n=0} ^{\infty} \frac{\left( -1 \right) ^n x^{8n+6}}{8n+4} [/tex]

    [tex] \int x^2 \arctan \left( x^4 \right) dx = \mathrm{C} + \sum _{n=0} ^{\infty} \int \frac{\left( -1 \right) ^n x^{8n+6}}{8n+4} = \mathrm{C} + \sum _{n=0} ^{\infty} \frac{\left( -1 \right) ^n x^{8n+7}}{\left( 8n+4 \right) \left( 8n+7 \right)} = \mathrm{C} + \frac{x^7}{28} - \frac{x^{15}}{180} + \frac{x^{23}}{460} - \frac{x^{31}}{868} + \cdots [/tex]

    [tex] \int _0 ^{1/3} x^2 \arctan \left( x^4 \right) dx = \left[ \frac{x^7}{28} - \frac{x^{15}}{180} + \frac{x^{23}}{460} - \frac{x^{31}}{868} + \cdots \right] _0 ^{1/3} = \frac{1}{2^2\cdot 3^7\cdot 7} - \frac{1}{2^2\cdot 3^{17} \cdot 5} + \frac{1}{2^2\cdot 3^{23} \cdot 5 \cdot 23} - \frac{1}{2^2 \cdot 3^{31} \cdot 7 \cdot 31} + \cdots [/tex]

    [tex] b_1 = \frac{1}{2^2\cdot 3^{17} \cdot 5} \approx 3.9 \times 10^{-10} < 10^{-6} \Longrightarrow \int _0 ^{1/3} x^2 \arctan \left( x^4 \right) dx \approx \frac{1}{2^2\cdot 3^7\cdot 7} - \frac{1}{2^2\cdot 3^{17} \cdot 5} \approx 0.000016 [/tex]

    The correct answer would be [tex] 0.000065 [/tex].
     
  2. jcsd
  3. Oct 27, 2004 #2

    NateTG

    User Avatar
    Science Advisor
    Homework Helper

    You appear to be ignoring the [tex]x^2[/tex] when you're determining the coefficients for your power series.
     
  4. Oct 27, 2004 #3
    Oh... I did not keep the 4 factor all the way down. Thanks.
     
  5. Oct 27, 2004 #4

    nrqed

    User Avatar
    Science Advisor
    Homework Helper
    Gold Member

    Why not simply use the Taylor series of Arctan? It's simply

    [itex] ArcTan (x^4) = x^4 - {x^{12} \over 3} + {x^{20} \over 5} - {x^{28} \over 7} + \ldots [/itex]



    Notice that you willl run into a probllem with your constant of integration "C" since it will get multiplied by [itex] x^2 [/itex] later and you would have to integrate it as well! So you must get rid of it. The way to do so is of course to impose that Arctan(0) =0.

    But again, using the Taylor series of ArcTan seems simpler to me.


    Pat
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?



Similar Discussions: Using a Power Series to Approximate a Definite Integral
  1. Definite integrals (Replies: 9)

  2. Definite integrals (Replies: 6)

  3. Power series (Replies: 8)

Loading...