Let [tex]K[/tex] be a field, [tex]\nu : K^* \rightarrow \texbb{Z}[/tex] a discrete valuation on [tex]K[/tex], and [tex]R=\{x \in K^* : \nu(x) \geq 0 \} \cup \{0\}[/tex] the valuation ring of [tex]\nu[/tex]. For each integer [tex]k \geq 0[/tex], define [tex]A_k=\{r \in R : \nu(r) \geq k \} \cup \{0\}[/tex].(adsbygoogle = window.adsbygoogle || []).push({});

(a) Prove that for any [tex]k[/tex], [tex]A_k[/tex] is a principal ideal, and that [tex]A_0 \supseteq A_1 \supseteq A_2 \supseteq\ldots[/tex]

(b) Prove that if [tex]I[/tex] is any nonzero ideal of [tex]R[/tex], then [tex]I=A_k[/tex] for some [tex]k \geq 0[/tex].

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Valuation ring questions

Loading...

**Physics Forums | Science Articles, Homework Help, Discussion**