• Support PF! Buy your school textbooks, materials and every day products Here!

Variational calculus proof

1. Suppose f:R[tex]^{NxN}[/tex] is defined by f(x,y) = [tex]\varphi[/tex](x) + [tex]\varphi[/tex]*(Ax+y) where [tex]\varphi[/tex][tex]\epsilon[/tex][tex]\Gamma[/tex](R[tex]^{N}[/tex]) and A[tex]\epsilon[/tex]R[tex]^{NxN}[/tex] is skew-symmetric.
Prove that f*(y,x) = f(x,y)


3. The Attempt at a Solution
Information I know:
Skew-symmetric : A*=-A
f* computation: f*(y) = sup(x[tex]\epsilon[/tex]R[tex]^{N}[/tex] {<x,y> - F(x)}

Would really appreciate it if someone would help me start this proof
 

Answers and Replies

Related Threads for: Variational calculus proof

  • Last Post
Replies
0
Views
1K
  • Last Post
Replies
6
Views
2K
  • Last Post
Replies
3
Views
374
  • Last Post
Replies
0
Views
997
  • Last Post
Replies
8
Views
1K
  • Last Post
Replies
1
Views
2K
  • Last Post
Replies
2
Views
2K
  • Last Post
Replies
10
Views
2K
Top