- #1

- 446

- 0

## Homework Statement

[PLAIN]http://img576.imageshack.us/img576/1710/vectorp.png [Broken]

## Homework Equations

## The Attempt at a Solution

I've done part (a) but how do I do (b)?

Last edited by a moderator:

You are using an out of date browser. It may not display this or other websites correctly.

You should upgrade or use an alternative browser.

You should upgrade or use an alternative browser.

- Thread starter Ted123
- Start date

- #1

- 446

- 0

[PLAIN]http://img576.imageshack.us/img576/1710/vectorp.png [Broken]

I've done part (a) but how do I do (b)?

Last edited by a moderator:

- #2

Char. Limit

Gold Member

- 1,204

- 14

Well, do you know how to find a tangent vector to the surface G?

- #3

- 446

- 0

Well, do you know how to find a tangent vector to the surface G?

No...

- #4

Char. Limit

Gold Member

- 1,204

- 14

- #5

- 446

- 0

Thanks that's really helpful.

Taking partial derivatives wrt [itex]u[/itex] I get:

[itex]\mathbf{r} '(u,v) = sinh(u)cos(v) \mathbf{i} + sinh(u)sin(v) \mathbf{j} + cosh(u) \mathbf{k}[/itex]

and [itex]\| \mathbf{r} '(u,v) \| = \sqrt{cosh(2u)}[/itex]

and so a tangent vector to G is

[itex]\mathbf{T}(u,v) = \frac{sinh(u)cos(v) \mathbf{i} + sinh(u)sin(v) \mathbf{j} + cosh(u) \mathbf{k}}{\sqrt{cosh(2u)}}[/itex]

So at [itex]\mathbf{r}_1[/itex] from part (a) we know [itex]u=sinh^{-1}(1)[/itex] and [itex]v=\frac{\pi}{4}[/itex] .

Hence [itex]\mathbf{T}(sinh^{-1}(1) , \frac{\pi}{4}) = \frac{1}{\sqrt{6} \mathbf{i} + \frac{1}{\sqrt{6} \mathbf{j} + \sqrt{\frac{2}{3}} \mathbf{k}[/itex] is a tangent vector to G at [itex]\mathbf{r}_1[/itex] .

This time, taking partial derivates wrt [itex]v[/itex] ,

[itex]\mathbf{r} '(u,v) = -cosh(u)sin(v) \mathbf{i} + cosh(u)cos(v) \mathbf{j}[/itex]

and [itex]\| \mathbf{r} '(u,v) \| = \sqrt{cosh^2(u)}[/itex]

Evaluating at [itex]\mathbf{r}_1[/itex] I get 0???

- #6

Char. Limit

Gold Member

- 1,204

- 14

1. [tex]\sqrt{cosh^2(u)} = cosh(u)[/tex]. This will simplify both of your calculations when finding the second unit tangent vector.

2. sin(pi/4) and cos(pi/4) are not zero.

- #7

- 446

- 0

1. [tex]\sqrt{cosh^2(u)} = cosh(u)[/tex]. This will simplify both of your calculations when finding the second unit tangent vector.

2. sin(pi/4) and cos(pi/4) are not zero.

For the first tangent vector:

[itex]\mathbf{T} (sinh^{-1}(1) , \frac{\pi}{4}) = \frac{1}{\sqrt{6} \mathbf{i} + \frac{1}{\sqrt{6} \mathbf{j} + \sqrt{\frac{2}{3}} \mathbf{k}}[/itex] is a tangent vector to G at [itex]\mathbf{r}_1[/itex]

For the 2nd:

[itex]\mathbf{T}(u , v) = \frac{\mathbf{r} '(u,v) = -cosh(u)sin(v) \mathbf{i} + cosh(u)cos(v) \mathbf{j}}{cosh(u)}[/itex]

[itex]\mathbf{T}(sinh^{-1}(1) , \frac{\pi}{4}) = \frac{-1+1}{\sqrt{2}} = 0[/itex]

- #8

Char. Limit

Gold Member

- 1,204

- 14

What happened to the unit vectors i and j?

- #9

- 446

- 0

What happened to the unit vectors i and j?

Sorry, ballsed up the latex.

For the first tangent vector:

[itex]\mathbf{T}(u,v) = \frac{sinh(u)cos(v) \mathbf{i} + sinh(u)sin(v) \mathbf{j} + cosh(u) \mathbf{k}}{\sqrt{cosh(2u)}}[/itex]

[itex]\mathbf{T} (sinh^{-1} (1) , \frac{\pi}{4}) = \frac{1}{\sqrt{6}} \mathbf{i} + \frac{1}{\sqrt{6}} \mathbf{j} + \sqrt{\frac{2}{3}} \mathbf{k}}[/itex] is a tangent vector to G at [itex]\mathbf{r}_1[/itex]

For the 2nd:

[itex]\mathbf{T}(u , v) = \frac{\mathbf{r} '(u,v) = -cosh(u)sin(v) \mathbf{i} + cosh(u)cos(v) \mathbf{j}}{cosh(u)}[/itex]

[itex]\mathbf{T}(sinh^{-1}(1) , \frac{\pi}{4}) = -\frac{1}{\sqrt{2}} \mathbf{i} +\frac{1}{\sqrt{2}}\mathbf{j}[/itex]

- #10

Char. Limit

Gold Member

- 1,204

- 14

But that last line is just not true. -i+j does not equal 0.

- #11

- 446

- 0

But that last line is just not true. -i+j does not equal 0.

Yeah of course not.

So presumably if I now calculate a normal vector of G at [itex]\mathbf{r}_1[/itex] it will be a multiple of the vector [itex]\nabla g(\mathbf{r}_1) =(2,2-2)[/itex]

- #12

Char. Limit

Gold Member

- 1,204

- 14

Presumably, yes. And the link I provided above also shows you how to find the normal vector.

- #13

- 446

- 0

Presumably, yes. And the link I provided above also shows you how to find the normal vector.

Trouble is if I try to find a normal vector from the 2nd tangent vector (by differentiating wrt v),

[itex]\mathbf{T}(u , v) = -sin(v) \mathbf{i} + cos(v) \mathbf{j}[/itex]

Then the resulting normal vector [itex]\frac{\mathbf{T}'(u , v)}{\|\mathbf{T} '(u , v) \|}[/itex] certainly isn't a multiple of [itex](2,2,-2)[/itex] as there's no

However it works for the 1st one as [itex]\frac{\mathbf{T}'(u , v)}{\|\mathbf{T} '(u , v) \|} = \frac{1}{3 \sqrt{3}} \mathbf{i} + \frac{1}{3\sqrt{3}} \mathbf{j} - \frac{1}{3\sqrt{3}} \mathbf{k}[/itex]

Last edited:

Share: