1. Not finding help here? Sign up for a free 30min tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Vector problems

  1. Sep 10, 2006 #1
    hello, i have a few theories questions to ask. (i don't know where to start for question such as these...)

    Question: By considering the angles between the vectors, show that vector A + vector B and vector A - vector B are perpendicular when |A| = |B|.

    Question: Prove for any vectors A and B, --->
    that |A+B|^2 + |A-B|^2 = 2(|A|^2 +|B|^2)

    Question: Three forces of 5N , 7N, 8N, are applied to an object. If the object is in a state of equillibrium, show how must the forces be arranged.

    also i wonder why is zero vector's direction is undefined? is it because there is no magnitude?

    Thank You
     
    Last edited: Sep 10, 2006
  2. jcsd
  3. Sep 10, 2006 #2

    andrevdh

    User Avatar
    Homework Helper

    For your last question the three forces need to form a closed triangle. Of cause the triangle can be rotated in any direction, which means that the direction of the forces are not uniquely defined, but the angles that the vectors make with one another are fixed. Also note that by changing the order of adding the three vectors will produce two triangles that are mirror images of each other.
     
  4. Sep 10, 2006 #3
    third question: the forces must be arranged in a way that the sum of them is the zero vector.
     
  5. Sep 10, 2006 #4
    hey :)

    to your first question:

    [tex]
    ( \vec A + \vec B ) \cdot (\vec A - \vec B) = (a_1+b_1)*(a_1-b_1) + (a_2+b_2)*(a_2-b_2) + (a_3+b_3)*(a_3-b_3)\\

    = a_1^2-b_1^2 + a_2^2 - b_2^2 + a_3^2 - b_3^2\\
    = a_1^2+a_2^2+a_3^2 - (b_1^2+b_2^2+b_3^2)
    [/tex]

    if perpendicular, this is supposed to be 0, so

    [tex]
    a_1^2+a_2^2+a_3^2 - (b_1^2+b_2^2+b_3^2) = 0\\
    a_1^2+a_2^2+a_3^2 = b_1^2+b_2^2+b_3^2\\
    \sqrt{a_1^2+a_2^2+a_3^2} = \sqrt{b_1^2+b_2^2+b_3^2}\\
    \Leftrightarrow |\vec A| = |\vec B|
    [/tex]
     
    Last edited: Sep 10, 2006
  6. Sep 10, 2006 #5
    sorry, there's been linebreaks missing, so here again:

    hey :)

    to your first question:

    [tex]
    ( \vec A + \vec B ) \cdot (\vec A - \vec B) = (a_1+b_1)*(a_1-b_1) + (a_2+b_2)*(a_2-b_2) + (a_3+b_3)*(a_3-b_3)\\

    = a_1^2-b_1^2 + a_2^2 - b_2^2 + a_3^2 - b_3^2\\
    = a_1^2+a_2^2+a_3^2 - (b_1^2+b_2^2+b_3^2)
    [/tex]

    if perpendicular, this is supposed to be 0, so

    [tex]
    a_1^2+a_2^2+a_3^2 - (b_1^2+b_2^2+b_3^2) = 0\\
    a_1^2+a_2^2+a_3^2 = b_1^2+b_2^2+b_3^2\\
    \sqrt{a_1^2+a_2^2+a_3^2} = \sqrt{b_1^2+b_2^2+b_3^2}\\
    \Leftrightarrow |\vec A| = |\vec B|
    [/tex]
     
  7. Sep 10, 2006 #6
    wait, we just factor them out? wow, that's cool thanks.
    But why did you mutiply the two vectors? Because they are perpendicular?

    For the last question i know that their sum has to be zero, but where would you place them? why are the angles fixed? it doesn't have to fixed, it could have a degree to it, doesn't it? i know that the resultant force of two forces has to be equal to the last vector, but how...?

    Thanks
     
  8. Sep 10, 2006 #7
    I multiplied them out because if I wanna find something out about the angle between them, the scalar product tells you. So basically I rewrote your task to:

    Proof: [tex] (\vec A + \vec B)*(\vec A - \vec B) = 0 [/tex] if [tex] |\vec A|=|\vec B| [/tex]

    That's how I read your question...
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?



Similar Discussions: Vector problems
  1. Vector problem (Replies: 8)

  2. Vector Problem (Replies: 3)

  3. Vector problem (Replies: 8)

  4. Vector problem (Replies: 1)

Loading...