Hi all,(adsbygoogle = window.adsbygoogle || []).push({});

While working on my differential equations homework, I encountered a proof dealing with linear independence and vector addition. I sort of know how to proceed but, not having dealt with formal proofs much, I am afraid that I may not be addressing all necessary apects of the proof. Anyway, here is the question: Prove that if the vectors x = (x_1)i + (x_2)j and y = (y_1)i + (y_2)j

are linearly independent, then any vector z = (z_1)i + (z_2)j can be expressed as a linear combination of x and y.

The linear combination of x and y gives us (x_1)i + (x_2)j + (y_1)i + (y_2)j. Rearranging terms, [(x_1)+(y_1)]i + [(x_2)+(y_2)]j = x+y. We can now define x+y = z. Therefore, z = (z_1)i + (z_2)j

Where do I bring in the necessity of linear independence?

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Vector-related Proof

**Physics Forums | Science Articles, Homework Help, Discussion**