1. Limited time only! Sign up for a free 30min personal tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Venturi tube calculation

  1. Feb 16, 2008 #1
    Air flows through this tube at a rate of 1200 cm^3/sec. Assume that air is an ideal fluid.
    What is the height h of mercury (in cm) in the right side of the U-tube?

    In case the picture doesn't show up, the tube is a Venturi tube. Wide end has diameter of 2cm, narrow diameter is 4 mm, and velocity of the air exiting the tube is 1200 cm^3/sec. The mercury is higher in the u-tube section directly below the narrow segment, and I need to find the height difference of the mercury on the right and left sides.

    I've tried using the velocity equations for a venturi tube: v_1 = A_2*sqrt[(2rho*gh)/rho(A_1^2 - A_2^2)] and solving for h. I also tried using the equation p_1 + 0.5rho*v_1^2 = p_1 - rho*gh + 0.5rho(A1/A2)^2*v_1^2 and solving for h.

    I'm not getting the right answers. I got something like 6.40cm for the first method, and 8.31cm. To obtain the velocity in the larger part of the tube I used A1v1=A2v2
    and got 48 cm^3/sec.

    I also have no idea what to do with all of these units. Should I leave all of my measurements in centimeters (2 cm, 1200cm^3/sec, etc) or in meters (0.02m, 12 m^3 sec, etc.) I might be getting the right answer, and be off by a factor of 100. How can I calculate the h?

    I appreciate your time.

    Attached Files:

  2. jcsd
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Can you offer guidance or do you also need help?
Draft saved Draft deleted

Similar Discussions: Venturi tube calculation