I just want to verify(adsbygoogle = window.adsbygoogle || []).push({});

For Polar coordinates, ##r^2=x^2+y^2## and ##x=r\cos \theta##, ##y=r\sin\theta##

##x(r,\theta)## and## y(r,\theta)## are not independent to each other like in rectangular.

In rectangular coordinates, ##\frac{\partial y}{\partial x}=\frac{dy}{dx}=0##

But in Polar coordinates,

[tex]\frac{\partial r}{\partial x}=\cos\theta,\;\frac{\partial \theta}{\partial x}=-\frac{\sin\theta}{r}[/tex]

[tex]\frac{\partial y(r,\theta)}{\partial x(r,\theta)}=\frac{\partial y(r,\theta)}{\partial r}\frac{\partial r}{\partial x(r,\theta)}+\frac{\partial y(r,\theta)}{\partial \theta}\frac{\partial \theta}{\partial x(r,\theta)}=

(\cos\theta) \frac{\partial y(r,\theta)}{\partial r}-\left(\frac{\sin\theta}{r}\right)\frac{\partial y(r,\theta)}{\partial \theta}[/tex]

Thanks

**Physics Forums - The Fusion of Science and Community**

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Verify partial differentiation.

Loading...

Similar Threads for Verify partial differentiation |
---|

A How to simplify the solution of the following linear homogeneous ODE? |

I Classification of First Order Linear Partial Differential Eq |

I Partial Vector Derivative |

**Physics Forums - The Fusion of Science and Community**