1. Not finding help here? Sign up for a free 30min tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Verifying an equation

  1. Feb 8, 2007 #1
    1. The problem statement, all variables and given/known data

    Consider the wave function

    Psi(x, t)=1/sqrt(a) * [sin(2*pi*x/a)*e^(-i*E2*t/h_bar) + cos(3*pi*x/a)*e^(-i*E3*t/h_bar)]

    for the particle in the one-dimensional box.

    a) Calculate the expectation values <E>, <x>, and <p>.
    b) Show that <x> and <p> satisfy the relation <p>=m*d<x>/dt

    2. Relevant equations

    <E>=Int[Psi_star*(i*h_bar*d/dt)*Psi, x=-a/2..a/2]
    <x>=Int[Psi_star*(-i*h_bar*d/dx)*Psi, x=-a/2..a/2]
    <p>=Int[Psi_star*x*Psi, x=-a/2..a/2]

    3. The attempt at a solution

    a) <x>=Int[1/a*[sin(2*pi*x/a)*e^(i*E2*t/h_bar) + cos(3*pi*x/a)*e^
    (i*E3*t/h_bar)]*x*[sin(2*pi*x/a)*e^(-i*E2*t/h_bar) + cos
    (3*pi*x/a)*e^(-i*E3*t/h_bar)], x=-a/2..a/2]

    After integration and simplification I get:

    <x>=(-24*a/25*pi^2) * (e^(i(E3 - E2)t/h_bar)) + e^(i(E2-E3)t/h_bar)

    And for <p>: <p>=Int[-i*h_bar/pi (sin(2*pi*x/a) * e^(i*E2*t/h_bar) +
    cos(3*pi*x/a)*e^(i*E3*t/h_bar))*d/dx(sin(2*pi*x/a) * e^
    (-i*E2*t/h_bar) + cos(3*pi*x/a)*e^(-i*E3*t/h_bar)),

    After integration and simplification I get:

    <p>=-i*h_bar/pi * [-4*a/(15*pi)*e^(i(E2-E3)t/h_bar) +
    =3*a/(5*pi) * e^(i(E3-E2)t/h_bar)

    After substituting E2=(2 * pi^2 * h_bar^2)/(m*a^2)
    E3=9/2 * pi^2*h_bar^2/(m*a^2)

    in <x> and <p> and applying m*d/dt to <x> I don't get

    This is what I get for the RHS:

    m*d<x>/dt=(-12/5)*i*h_bar/a * [e^(i((2.5*pi^2 * h_bar^2)/
    (m*a^2)t/h_bar))-e^(-i((2.5*pi^2 * h_bar^2)/(m*a^2)

    Can you please help. Thank you.
  2. jcsd
  3. Feb 9, 2007 #2


    User Avatar
    Science Advisor
    Homework Helper
    Gold Member

Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?