I've read the derivation of Kirchhoff's formula for three dimensional wave equation using the Euler-Poisson-Darboux equation. The derivation seems to be fine, but I thought that the Kirchhoff's formula as a final result is a kind of result that you should be able to verify it by substituting it back to the wave equation. Well I substituted it into the wave equation, and tried to manipulate the expressions in hope of all the terms cancelling, but I couldn't make it work. My question is that has anyone ever succeeded in verifying the Kirchhoff's formula by substituting it into the wave equation?(adsbygoogle = window.adsbygoogle || []).push({});

The wave equation:

[tex]

\partial_t^2u(t,x) - \nabla_x^2u(t,x) = 0

[/tex]

The Kirchhoff's formula:

[tex]

u(t,x) = \frac{1}{4\pi t^2}\int\limits_{\partial B(x,t)} \big(t\partial_tu(0,y) + u(0,y) + (y-x)\cdot\nabla_xu(0,y)\big)d^2y

[/tex]

**Physics Forums | Science Articles, Homework Help, Discussion**

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# I Verifying Kirchhoff formula

Have something to add?

Draft saved
Draft deleted

**Physics Forums | Science Articles, Homework Help, Discussion**