- #1

- 2,111

- 18

The wave equation:

[tex]

\partial_t^2u(t,x) - \nabla_x^2u(t,x) = 0

[/tex]

The Kirchhoff's formula:

[tex]

u(t,x) = \frac{1}{4\pi t^2}\int\limits_{\partial B(x,t)} \big(t\partial_tu(0,y) + u(0,y) + (y-x)\cdot\nabla_xu(0,y)\big)d^2y

[/tex]

You are using an out of date browser. It may not display this or other websites correctly.

You should upgrade or use an alternative browser.

You should upgrade or use an alternative browser.

- I
- Thread starter jostpuur
- Start date

- #1

- 2,111

- 18

The wave equation:

[tex]

\partial_t^2u(t,x) - \nabla_x^2u(t,x) = 0

[/tex]

The Kirchhoff's formula:

[tex]

u(t,x) = \frac{1}{4\pi t^2}\int\limits_{\partial B(x,t)} \big(t\partial_tu(0,y) + u(0,y) + (y-x)\cdot\nabla_xu(0,y)\big)d^2y

[/tex]

- #2

- 18,378

- 8,249

Share: