- #1

STEMucator

Homework Helper

- 2,075

- 140

**Interior Point :**A point [itex]Q \in S \subseteq ℝ^n[/itex] is an interior point of S if [itex]\forall \delta > 0, \exists N_{\delta}(Q) \subseteq S[/itex]. The interior of S consists of all interior points and is denoted [itex]S˚[/itex]

**Boundary Point :**A point [itex]Q \in S \subseteq ℝ^n[/itex] is a boundary point of S if [itex]\forall \delta > 0, \exists P_1 \in S \wedge P_2 \in (ℝ^n - S) \space| \space P_1, P_2 \in N_{\delta}(Q)[/itex]

**Limit Point :**A point [itex]Q \in S \subseteq ℝ^n[/itex] is a limit point of S if [itex]\forall \delta > 0, \exists P \in S \space | \space P \in N_{\delta}(Q), \space P≠Q[/itex]

Trying to condense my stuff, hopefully I'm doing this correctly.