# Vertical steel column analysis

#### davidratcliff6255

I have recently came across design capacity tables for structural steel (hollow sections). - In the table it shows that 273.1 x 12.7 CHS will not buckle at 1 metre of height (below that, size 219.1 x 12.7 at the same height will buckle at 10 kN less than full capacity if it were fully supported)... So if a continuous vertical length of size 273.1 x 12.7 tubing were laterally supported every 1 metre, the tubing should reach full height of around 3.9 km, right?

I have figured out the webbing method of that size tubing to be around 35% extra (self supported) weight... so works out to be somewhere around 2.5 km total height before it will squash from its own weight. - Smaller diamater = more webbing, larger diamater = less webbing. So if a large enough diamater were used you could probably get the webbing down to around 10% of the weight of the tubing... So around 3.5 km uniform section.

I am seeking input from anyone with access to (FE) computer analysis program who would be interested in doing a test with me. If I am right then the system could be used for anything from a yacht/ship mast to an, earthquake proofing, highrise building "spine" system... which could also double as the crane used for heavy lifting during construction. With a couple of simple changes can also be used for bridges.

Regards,
Dave

Related General Engineering News on Phys.org

#### Baluncore

Science Advisor
If you extend your concept a little further you will put holes in the webs and create what is a self braced lattice column or tower, as is used for construction cranes, electricity transmission pylons and communication towers.
https://en.wikipedia.org/wiki/Tokyo_Skytree

### Want to reply to this thread?

"Vertical steel column analysis"

### Physics Forums Values

We Value Quality
• Topics based on mainstream science
• Proper English grammar and spelling
We Value Civility
• Positive and compassionate attitudes
• Patience while debating
We Value Productivity
• Disciplined to remain on-topic
• Recognition of own weaknesses
• Solo and co-op problem solving