1. Not finding help here? Sign up for a free 30min tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Vibrations and Waves

  1. Jan 3, 2005 #1
    How far from equilibrium will a 45 g mass with amp. of .35 m for a spring (k = 21 N/m) undergoing simple harmonic motion have a speed that is half its maximum velocity?
    a. .3 m
    b. .45 m
    c. .7 m
    d. .92 m
    e. 3.5 m

    Choice B is wrong.

    Use

    v = v_max*sqrt[1 - (x^2/A^2 m)]

    Do I use k or m at all???
    (1/2)v_max = v_max*sqrt[1 - (x^2/A^2 m)]
    Left with:

    1/2 =sqrt[1 - (x^2/A^2 m)]

    After plugging everything in and solving for x I get .303m (A.). Am I wrong?
     
    Last edited: Jan 3, 2005
  2. jcsd
  3. Jan 3, 2005 #2

    dextercioby

    User Avatar
    Science Advisor
    Homework Helper

    Okay,let's take it this way.'A' is the only possible answer as it has the only figure less than the amplitude of oscillation.

    Another rigurous mathematical justification would be:
    [tex] x=A\sin\omega t[/tex](1)
    [tex]v=\omega A\cos\omega t[/tex](2)
    From (2) u get that for hamf of the maximum velocity the 'cos' must be 1/2,therefore the 'sin' would be [itex]\sqrt{3}/2 [/itex].
    Plug the sine into (1) and the "x" comes out to be [itex]0.175\sqrt{3}m [/itex]
    ,which can be (very roughly) approximated to 0.30m.

    Daniel.
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?



Similar Discussions: Vibrations and Waves
  1. Vibrations and waves (Replies: 2)

  2. Vibrations in Waves (Replies: 4)

  3. WAVES and vibrations (Replies: 4)

  4. Vibrations and waves (Replies: 1)

  5. Vibrations and waves (Replies: 1)

Loading...