h = any dimension of the figure, A(h) = area of the cross-sections perpendicular to h described as a function of the position along h(adsbygoogle = window.adsbygoogle || []).push({});

this will work for any figure (no matter if the prism is slanted or the cross-sections change shape).

Can anyone maybe explain this to me? I want to find out how to integrate any forumula for Area of an object into a formula for Volume of an object.

The formula is this: [tex]\int A(h) dh[/tex]

This sentence that I don't understand is this:area of the cross-sections perpendicular to h described as a function of the position along h

Thanks.

**Physics Forums - The Fusion of Science and Community**

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# (Volume)' = Area

Loading...

Similar Threads - Volume Area | Date |
---|---|

B Integrating to find surface area/volume of hemisphere | Apr 14, 2017 |

Volume of a tetraedron in function of the areas | Jun 15, 2015 |

Finding percentage of volume/area in a cube/square | Oct 25, 2014 |

Cylinder Calculator - Volume Area Radius Height | Aug 28, 2014 |

Surface area and volume uniquely determine a shape | May 9, 2014 |

**Physics Forums - The Fusion of Science and Community**