I have this problem that reads(adsbygoogle = window.adsbygoogle || []).push({});

a) Prove that the three-product (A.(B x C)) of the vectorsA,BandCwhereA,BandCare not lying in a single plane, is the volume of the parallelepiped whose edges areA,BandCwith positive or negative sign according to wheter a right-hand screw rotated fromAtowardBwould advance alongCin the positive or negative direction.

With some effort, I did that.

b) Use this result to prove the following identity geometrically:A.(B x C) = (A x B).C. Verify that the right and left members of the identity are equal in sign as well as in magnitude.

I proved the identity geometrically and then I argued that both members were the same in magnitude because geometrically they both represented by parallelepiped of equal edged and all parallelepiped of equal edges have equal volume, hence...etc.

But the sign part, I can't find the trick.

The identity gives |ABCsin(x)cos(y)| = |ABCsin(w)cos(z)| where x is the angle betweenBandC, y the angle betweenAandB x C, w the angle betweenAandBand z the angle betweenCandA x B.

All of these angles are between 0 and 180°, which means sin(x) and sin(w) are always positive and the negative sign comes from y and z being between 90° and 180°.

If I could show that when one angle on the cos is between 90° and 180°, so is the other it would be done, but I can't find a relationship between any of the 4 above angles except that sin(x)|cos(y)| = sin(w)|cos(z)|.

If you have any idea, let me know. Big thanks!

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Volume of a parallelepiped's sign

**Physics Forums | Science Articles, Homework Help, Discussion**