Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

B Volume of Hypersphere?

  1. Apr 9, 2016 #1
    What is the equation used to calculate the volume of a four- dimensional "sphere," or hypersphere?
     
  2. jcsd
  3. Apr 9, 2016 #2

    micromass

    User Avatar
    Staff Emeritus
    Science Advisor
    Education Advisor
    2016 Award

  4. Apr 9, 2016 #3
  5. Apr 9, 2016 #4

    micromass

    User Avatar
    Staff Emeritus
    Science Advisor
    Education Advisor
    2016 Award

    You're not wrong, but the situation is ambiguous. Consider the usual sphere. The volume has unit ##cm^3## and its area has units ##cm^2##. When we get to the hypersphere, the number analogous to the surface area is the volume and is measured in ##cm^3##. What you want is the number analogous to the volume and which is measured in ##cm^4##. I understand completely the desire to call this volume. Mathematicians call it the 4-dimensional Lebesgue measure.
     
  6. Apr 9, 2016 #5

    mathwonk

    User Avatar
    Science Advisor
    Homework Helper

    here are some notes i wrote on this topic:
    just as a 3 ball is swept out by revolving half a disc around a line, so a 4 ball is generated by revolving half a 3 ball.
    moreover the volume of the solid of revolution can be computed by knowing where the center of mass is. then we can
    use Archimedes’ trick to do a calculation that Archimedes could have done. Namely he showed
    that the volume of half a 3-ball equals the difference of the volumes of a cylinder minus that of a
    cone. Now the center of mass of a cylinder is obviously half way up, and Archimedes knew that
    just as the center of mass of a triangle is 1/3 of the way up from the base, the center of mass of a
    cone is ¼ the way up from the base.
    Thus we can use centers of mass and subtraction to get the volume of a 4-ball. I.e. a cylinder of
    height R and base radius R has center of mass at height R/2, and volume πR^2.R, so revolving it
    around an axis at its base gives 4 dimensional volume of 2π(R/2).πR^2.R = π^2.R^4. Now the
    inverted cone of height R and base radius R has center of mass at distance ¼ of the way from its
    base, hence distance (3R/4) from the axis, and volume (1/3)πR^2.R. Thus revolving it generates
    a 4 dimensional volume equal to (2π)(3R/4).(1/3)πR^2.R = (1/2)π^2.R^4. Subtracting the
    volume of the revolved cone from that of the revolved cylinder, gives the 4 dimensional volume
    of the revolved half 3-ball, i.e. the volume of the full 4-ball as π^2.R^4 - (1/2)π^2.R^4 =
    (1/2)π^2.R^4.
     
    Last edited: Apr 13, 2016
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?
Draft saved Draft deleted



Similar Discussions: Volume of Hypersphere?
  1. Volume of a prism (Replies: 5)

  2. Imaginary volume (Replies: 1)

  3. Volume Integral (Replies: 3)

Loading...