Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Wavefront's power losses due to perpendicular collision with dielectric material.

  1. Mar 1, 2012 #1
    1. The problem statement, all variables and given/known data
    How large proportion of wavefront's power penetrates dielectric material's surface in a perpendicular collision from air.

    The only parameter that I have is [itex] \varepsilon_r = 16 [/itex] where [itex] \varepsilon_r [/itex] is the relative permittivity.

    2. Relevant equations
    [itex] \varepsilon = \varepsilon_r \varepsilon_0 [/itex]
    [itex] \eta = \sqrt{\frac{\mu}{\varepsilon}}[/itex] Where [itex]\mu = \mu_0 [/itex] Because of the dielectric material.
    [itex] \vec E(\vec r) = \vec E_0 e^{-j \vec k \cdot \vec r}[/itex]
    [itex] \vec H(\vec r) = \frac{1}{\eta} \vec E_{0p} e^{-j \vec k \cdot \vec r}[/itex] Where [itex] \vec E_{0p} [/itex] is perpendicular to [itex] \vec E_0 [/itex] and has the same magnitude.
    [itex] \vec S(\vec r) = \frac{1}{2} \vec E(\vec r) \times \vec H(\vec r)^{*}[/itex] The complex poyinting vector.

    3. The attempt at a solution

    [itex] \vec E_+(\vec r) = \vec E_0 e^{-j \vec k_1 \cdot \vec r}[/itex] wavefront in the air.
    [itex] \vec E_-(\vec r) = \vec E_0 e^{-j \vec k_2 \cdot \vec r}[/itex] wavefront in the material
    And [itex] \eta_1 = \sqrt{\varepsilon_0 \mu_0}[/itex] is the wave impedance.
    Thus we get
    [itex] \vec H_+(\vec r) = \frac{1}{\eta_1} \vec E_{0p} e^{-j \vec k_1 \cdot \vec r}[/itex]
    [itex] \vec H_-(\vec r) = \frac{1}{\eta_2} \vec E_{0p} e^{-j \vec k_2 \cdot \vec r}[/itex]
    Now the complex poyinting vectors are
    [itex] \vec S_+(\vec r) = \frac{1}{2} \vec E_+(\vec r) \times \vec H_+(\vec r)^{*}[/itex]
    We're not interested in the directions so we can just check the magnitudes thus we get.
    [itex] \vec S_+(\vec r) = \frac{1}{2\eta_1} |E_0|^2[/itex]
    And same thing for the other wavefront...
    [itex] \vec S_-(\vec r) = \frac{1}{2\eta_2} |E_0|^2[/itex]

    So the passing fraction is
    [itex]\frac{ \vec S_-(\vec r)}{\vec S_+(\vec r)} =
    \frac{\frac{1}{\eta_2}}{\frac{1}{\eta_1}} = \frac{\eta_1}{\eta_2} =
    {\sqrt{ \frac{\mu_0}{\varepsilon_r \varepsilon_0} }} = \sqrt{\epsilon_r}=4[/itex]

    So interestingly output is four times higher than input... So I have a problem here =(
    Last edited: Mar 1, 2012
  2. jcsd
  3. Mar 1, 2012 #2


    User Avatar
    Gold Member

    I suggest to use [itex.] rather than [tex.] or the latex will be displayed on a new line for each expression.
    When you close the [itex.], use [/itex.] rather than [\itex.]. This is the reason why it doesn't work.
    Without the . inside the []'s.
  4. Mar 1, 2012 #3
    OH YES!
    Thank you kind sir.
  5. Mar 1, 2012 #4

    rude man

    User Avatar
    Homework Helper
    Gold Member

    Penetrated power = incident power minus reflected power.
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook