I'm working in Liboff, 4e, QM, page 114, problem 4.35.(adsbygoogle = window.adsbygoogle || []).push({});

An electron in a 1-D box with walls at x= 0,a is in the state [tex]\psi(x) = A[/tex] for [tex]x\in (0,a/2)[/tex] and [tex]\psi(x) = -A[/tex] for [tex]x\in (a/2,a)[/tex]. What is the lowest possible energy that can be measured?

From my understanding, the answer to this question will be the integer of first nonzero coefficient in the expansion [tex]\psi = \Sigma \limits_{n=1}^{\infty} a_n \phi_n[/tex], where [tex]\phi_n = \sqrt{\frac{2}{a}}\sin(\frac{n\pi x}{a})[/tex] are the basis functions given in eq (4.15) from the book (the eigenstates for the 1D box Hamiltonian). I do this and I get [tex]a_n = \frac{\sqrt{2}}{n\pi}(1+\cos(n\pi) - 2\cos(n\pi/2))[/tex]. Now correct me if I'm wrong, but is it not true that [tex]\psi(x)=A[/tex] for [tex]x\in (0,a)[/tex] represents the same state since only the square of the wavefunction is given significance? In that case, however, I get [tex]a_n=\frac{\sqrt{2}}{n\pi}(1-\cos(n\pi))[/tex]. It is my understanding that [tex]a_n^2[/tex] represents the probability of measuring the particle to be in the state [tex]\phi_n[/tex]. But in these two cases, we will get different [tex]a_n^2[/tex] indicating that the two states are physically different.

Can anyone point out my mistake?

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Wavefunction expansion coefficients

Loading...

Similar Threads for Wavefunction expansion coefficients |
---|

I What's the significance of HUP if Ψ collapses? |

B Wavefunctions and the de Broglie wavelength |

I How to pick an operator onto which the wavefunction collapses |

I Qualitative plots of harmonic oscillator wave function |

I Does measuring an atom collapse the wavefunction of its parts? |

**Physics Forums | Science Articles, Homework Help, Discussion**