I'm working in Liboff, 4e, QM, page 114, problem 4.35.(adsbygoogle = window.adsbygoogle || []).push({});

An electron in a 1-D box with walls at x= 0,a is in the state [tex]\psi(x) = A[/tex] for [tex]x\in (0,a/2)[/tex] and [tex]\psi(x) = -A[/tex] for [tex]x\in (a/2,a)[/tex]. What is the lowest possible energy that can be measured?

From my understanding, the answer to this question will be the integer of first nonzero coefficient in the expansion [tex]\psi = \Sigma \limits_{n=1}^{\infty} a_n \phi_n[/tex], where [tex]\phi_n = \sqrt{\frac{2}{a}}\sin(\frac{n\pi x}{a})[/tex] are the basis functions given in eq (4.15) from the book (the eigenstates for the 1D box Hamiltonian). I do this and I get [tex]a_n = \frac{\sqrt{2}}{n\pi}(1+\cos(n\pi) - 2\cos(n\pi/2))[/tex]. Now correct me if I'm wrong, but is it not true that [tex]\psi(x)=A[/tex] for [tex]x\in (0,a)[/tex] represents the same state since only the square of the wavefunction is given significance? In that case, however, I get [tex]a_n=\frac{\sqrt{2}}{n\pi}(1-\cos(n\pi))[/tex]. It is my understanding that [tex]a_n^2[/tex] represents the probability of measuring the particle to be in the state [tex]\phi_n[/tex]. But in these two cases, we will get different [tex]a_n^2[/tex] indicating that the two states are physically different.

Can anyone point out my mistake?

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Wavefunction expansion coefficients

**Physics Forums | Science Articles, Homework Help, Discussion**