1. Limited time only! Sign up for a free 30min personal tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

We know e (exponential) is a irrational number

  1. Apr 2, 2003 #1
    we know e (exponential) is a irrational number....
    how can we prove it??
    Last edited by a moderator: Feb 4, 2013
  2. jcsd
  3. Apr 2, 2003 #2


    User Avatar

    The way we calculate e can be similiar to Pi.
    One way yields an infinite series of non-repeating rational numbers. The sum is therefore irrational.

    Try proving the sqrt(5) is irrational.
  4. Apr 2, 2003 #3


    User Avatar
    Science Advisor

    Emu, do you know of any way of proving directly that the digits in the decimal expansion of e are NOT repeating? I'm not saying it can't be done, only that I think it's easier to prove e cannot be written as a fraction.

    One standard method is to use the Taylor's series (which may be what emu meant): e= 1+ 1/2 + 1/6+ ...+ 1/n!+ ...
    If j is any positve integer then e*j!= integer+ 1/(q+1)+ 1/(q+1)(q+2)+ ... which is not an integer so e cannot be written as a fraction with denominator j for any j.

    A theorem I saw years ago was this: If c> 0, and there exist a function f(x), continuous on [0,c], positive on (0,c) and such that f(x) and its iterated anti-derivatives can be taken to be integer valued at both 0 and c, the c is irrational!

    Taking f(x)= sin(x) in this theorem shows that pi is irrational.

    It can also be used to prove: If c is a positive number other than 1 and ln(c) is rational, then c is irrational.

    Since e is a positive number, not equal to 1, and ln(e)= 1 is rational, it follows that e is irrational.
  5. Apr 2, 2003 #4
  6. Apr 2, 2003 #5
    While e cannot be written as a fraction, e to its first 2 million decimal places can. I'm just not going to.
  7. Apr 2, 2003 #6


    User Avatar
    Staff Emeritus
    Science Advisor
    Gold Member

    That's not obvious... I don't see why the infinite sequence there cannot add up to an integral value.

  8. Apr 3, 2003 #7
    Let An=1+1/2!+...+1/n!;
    It's quite simple to prove that 1/(n+1)!<e-An<1/(n!*n);
    Let's suppose e is rational, so it's equal to p/q, where p and q are integers.
    1/(n+1)!<e-(1+1/2!+...+1/n!)<1/(n!*n); | *n!;
    But between 1/(n+1) and 1/n is no integer...
    n!*p/q must be an integer because for n big enough n! is a multiple of q;
    So e is not rational...
  9. Apr 3, 2003 #8
    that's kind of a neat prove, thanks for posting it. I don't think I would've caught that last part about for n big enough...
  10. Apr 6, 2003 #9
    thank you....:)
  11. Apr 6, 2003 #10


    User Avatar
    Staff Emeritus
    Science Advisor
    Gold Member


    That bit isn't obvious either.... but the ordinary taylor remainder formula gives e/(n+1)! for that term which is sufficient for the proof. Don't tell me how to get that end of the inequality, it'd be a good exercise to figure it out myself!

Share this great discussion with others via Reddit, Google+, Twitter, or Facebook