I'm starting on lagrangian mechanics and is a little puzzled by the use of generalized coordinates. Shortly, what is a degree of freedom?(adsbygoogle = window.adsbygoogle || []).push({});

And what I find harder to understand, why is it that a holonomic constraint allows you to remove a degree of freedom? Consider for instance two particles between which the distance is fixed. This gives 5 degrees of freedom, at least so I heard. Because that is kind of weird to me. As far as I see it the particles can still move anywhere on the x,y and z axis can't they? I can see that in terms of rotations you can only make 2 different ones, and then you can translate the two particles in 3 different directions. But when is it that rotations comes into the picture, because for a collection of N particles you would just have 3N dof, which correspond to movement in three different directions in a euclidean coordinate system.

Talking about the problem with 2 particles with constant distance between them, is it then possible directly, mathematically from the constrain r=c to show that only 5 dof are needed? And can anyone do it?

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# What are degrees of freedom

**Physics Forums | Science Articles, Homework Help, Discussion**