- #1
LagrangeEuler
- 717
- 22
Homework Statement
System of equations
[tex]\frac{du_j}{dt}=u_{j+1}+u_{j-1}-2u_j-\frac{K}{2 \pi}\sin(2\pi u_j)+\bar{F}+F_{ac}\cos(2\pi \nu_o t)[/tex]
where ##j=1,2,3,4##. So ##\{u_j\}## is set of coordinates. If we apply symmetry transformation
[tex]\sigma_{r,m,s}\{u_j(t)\}=\{u_{j+r}(t-\frac{s}{\nu_0})\}[/tex]
how to find condition for which
[tex]\sigma_{r,m,s}\{u_j(t)\}=\{u_{j}(t) \}[/tex]
We impose cyclic boundary condition.
[/B]
Homework Equations
The Attempt at a Solution
If I understand well
[tex]\frac{du_1}{dt}=u_{2}+u_{4}-2u_1-\frac{K}{2 \pi}\sin(2\pi u_1)+\bar{F}+F_{ac}\cos(2\pi \nu_o t)[/tex]
[tex]\frac{du_2}{dt}=u_{1}+u_{3}-2u_2-\frac{K}{2 \pi}\sin(2\pi u_2)+\bar{F}+F_{ac}\cos(2\pi \nu_o t)[/tex]
[tex]\frac{du_3}{dt}=u_{2}+u_{4}-2u_3-\frac{K}{2 \pi}\sin(2\pi u_3)+\bar{F}+F_{ac}\cos(2\pi \nu_o t)[/tex]
[tex]\frac{du_4}{dt}=u_{3}+u_{1}-2u_4-\frac{K}{2 \pi}\sin(2\pi u_4)+\bar{F}+F_{ac}\cos(2\pi \nu_o t)[/tex]
And to transformation be satisfied [tex]\sigma_{r,m,s}\{u_j(t)\}=\{u_{j}(t) \}[/tex]
it is important that for example
[tex]\sigma_{r,m,s}u_1=u_4[/tex]
[tex]\sigma_{r,m,s}u_2=u_3[/tex]
...
But I am not sure how to show explicite consequence from this
[tex]\sigma_{r,m,s}\{u_j(t)\}=\{u_{j}(t) \}[/tex]
[/B]