- #1

- 20

- 1

## Summary:

- The killing vector equation reads: ##\nabla_{(\mu K_{\nu}) = 0## What do the parenthesis mean explicitly?

## Main Question or Discussion Point

Hi all,

The killing vector equation reads: ##\nabla_{(\mu K_{\nu})} = 0## What do the parenthesis mean explicitly?

Moreover, I know that ##\nabla_\mu x^\nu = \partial_\mu x^\nu+ \Gamma_{\rho \mu}^\nu x^\rho##

So if the parentheses mean symmetric the Killing equation will read:

##\frac{1}{2} ( \partial_\mu k_\nu + \partial_\nu k_\mu) - \Gamma_{\nu \mu}^\rho k^\rho##

Is this correct?

The killing vector equation reads: ##\nabla_{(\mu K_{\nu})} = 0## What do the parenthesis mean explicitly?

Moreover, I know that ##\nabla_\mu x^\nu = \partial_\mu x^\nu+ \Gamma_{\rho \mu}^\nu x^\rho##

So if the parentheses mean symmetric the Killing equation will read:

##\frac{1}{2} ( \partial_\mu k_\nu + \partial_\nu k_\mu) - \Gamma_{\nu \mu}^\rho k^\rho##

Is this correct?

Last edited by a moderator: