Of course, you can't DEFINE i as "square root of -1", not because -1 doesn't have a square root, but because, like any number, it has TWO.
Silly "paradoxes" like: i= [sqrt](-1) so i*i= i^{2}= [sqrt](-1)*[sqrt](-1)= [sqrt](-1*-1)= [sqrt](1)= 1 depend on that ambiguity.
When we are working in the real numbers, we can specify sqrt[x] as meaning the POSITVE root. In complex numbers, we don't have any way of distinguishing "positive" or "negative" (the complex numbers cannot be an ordered field).
The way complex numbers are properly defined is as PAIRS of real numbers (a,b) with addition defined as (a,b)+ (c,d)= (a+b, c+d) and multiplication defined as (a,b)*(c,d)= (ac-bd,ad+bc). It then follows that numbers of the form (a,0) act like real numbers while (0,1)*(0,1)= (0*0-1*1,0*1+1*0)= (-1,0). If we identify (0,1) with i (having dodged the question of how to distinguish between roots), we can write any complex number as (a, b)= a+ bi and have i*i= (-1,0)= -1.
We Value Quality
• Topics based on mainstream science
• Proper English grammar and spelling We Value Civility
• Positive and compassionate attitudes
• Patience while debating We Value Productivity
• Disciplined to remain on-topic
• Recognition of own weaknesses
• Solo and co-op problem solving