How Do You Integrate ##\int \tan 2x \ dx##?

  • Thread starter Thread starter askor
  • Start date Start date
  • Tags Tags
    Dx Integral Tan
askor
Messages
168
Reaction score
9
What is ##\int \tan 2x \ dx##?

What I get is

##\int \tan 2x \ dx##
##= \int \frac{\sin 2x}{\cos 2x} dx##
##= \int \frac{2 \sin x \cos x}{1 - 2 \sin^2 x}dx##

let u = sin x then ##\frac{du}{dx} = \cos x## or du = cos x dx

So

##= \int \frac{2 \sin x \cos x}{1 - 2 \sin^2 x}dx##
##= \int \frac{2u}{1 - 2u^2} du##
 
Physics news on Phys.org
askor said:
What is ##\int \tan 2x \ dx##?

What I get is

##\int \tan 2x \ dx##
##= \int \frac{\sin 2x}{\cos 2x} dx##
##= \int \frac{2 \sin x \cos x}{1 - 2 \sin^2 x}dx##

let u = sin x then ##\frac{du}{dx} = \cos x## or du = cos x dx

So

##= \int \frac{2 \sin x \cos x}{1 - 2 \sin^2 x}dx##
##= \int \frac{2u}{1 - 2u^2} du##
There may be easier ways to do this, but since you tried it this way, notice that ##2u du= -\frac{1}{2}d(1-2u²)##
 
askor said:
What is ##\int \tan 2x \ dx##?

What I get is

##\int \tan 2x \ dx##
##= \int \frac{\sin 2x}{\cos 2x} dx##
##= \int \frac{2 \sin x \cos x}{1 - 2 \sin^2 x}dx##

let u = sin x then ##\frac{du}{dx} = \cos x## or du = cos x dx

So

##= \int \frac{2 \sin x \cos x}{1 - 2 \sin^2 x}dx##
##= \int \frac{2u}{1 - 2u^2} du##
Rather than saying u = sin x, use u = 2x instead. Just expand tan u into ##\frac{sin\, u}{cos\, u}##.
This integral is much easier to solve.

Expanding sin 2x and cos 2x in terms of sin x and cos x just makes things more complicated.
 
askor said:
What is ##\int \tan 2x \ dx##?

What I get is

##\int \tan 2x \ dx##
##= \int \frac{\sin 2x}{\cos 2x} dx##
##= \int \frac{2 \sin x \cos x}{1 - 2 \sin^2 x}dx##

let u = sin x then ##\frac{du}{dx} = \cos x## or du = cos x dx

So

##= \int \frac{2 \sin x \cos x}{1 - 2 \sin^2 x}dx##
##= \int \frac{2u}{1 - 2u^2} du##
Let ##v= 1- 2u^2## so that ##dv= -4u du##. Then ##(-1/2)dv= 2u du## and the integral becomes ##-\frac{1}{2}\int \frac{dv}{v}##