(adsbygoogle = window.adsbygoogle || []).push({}); 1. The problem statement, all variables and given/known data

Suppose you have three functions, [itex]f_{1}(x_1),f_{2}(x_2),f_{3}(x_3)[/itex]. Consider the following expression: [itex]H=\int_{0}^{f_{1}(v_1)} G(f_2(\xi))G(f_3(\xi))d\xi[/itex], where [itex] G [/itex] is some continuous function. What is [itex] \frac{\partial H}{\partial x_{j}}[/itex], [itex]j\neq 1[/itex]?

3. The attempt at a solution

According to me, all this derivatives are zero. However, I am not quite sure of this because, by applying the chain rule I obtain: [itex] \frac{\partial H}{\partial x_{2}}=\frac{\partial H}{\partial f_{2}}\frac{\partial f_2}{\partial x_{2}}[/itex]. Since [itex]\frac{\partial H}{\partial f_{2}}[/itex] and [itex]\frac{\partial f_2}{\partial x_{2}}[/itex] are both nonzero (known data), then the whole thing should be different from zero. Am I wrong here?

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: What is the derivate of this expression?

Can you offer guidance or do you also need help?

Draft saved
Draft deleted

**Physics Forums | Science Articles, Homework Help, Discussion**