- #1
NewScientist
- 171
- 0
The title is pretty self explanitary.
From first principles find f'(x) for f(x)=x.(rootx)
Look forward to your replies
From first principles find f'(x) for f(x)=x.(rootx)
Look forward to your replies
NewScientist said:f'(x) = f(a+h) + f(a)
f'(x) = lim (h->0) [(x+h)^3/2 + x^3/2]/h
how do you resolve the (x+h)^3/2)
?
NewScientist said:f'(x) = f(a+h) + f(a)
f'(x) = lim (h->0) [(x+h)^3/2 + x^3/2]/h
how do you resolve the (x+h)^3/2)
?
Just a small error, it's 3x2h + 3xh2 + h3 in the numerator (not h2).NewScientist said:[tex]f'(x)=\lim_{h\rightarrow 0}\frac{3x^2h+3h^2x +h^2}{h[(x+h)^\frac{3}{2} + 3^\frac{3}{2}]}[/tex].
Any idea?