Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

What is the derivative of x! ?

  1. Apr 14, 2015 #1
    what is the derivative of x! ??
     
  2. jcsd
  3. Apr 14, 2015 #2

    pwsnafu

    User Avatar
    Science Advisor

    Very easy: doesn't exist. Any differentiable function is necessarily continuous, but x! is only defined on the natural numbers, and not continuous.
     
  4. Apr 14, 2015 #3
    thank you for help.
     
  5. May 8, 2015 #4
    The previous response is quite correct. However, there is a "natural" continuous extension of the factorial function -- a way to "connect the dots", if you like. Look up the "Bohr–Mollerup theorem" and learn about the Gamma function. For integers x we have x! = Gamma(x+1), so perhaps you would like to know about Gamma'(x+1)? That would be equal to (x!) ( 1 + 1/2 + ... + 1/x - gamma ) where gamma=0.577... is Euler's constant.

    It's also worth learning Stirling's Approximation: x! is roughly (x/e)^x sqrt(2 pi x ) . That's a formula you can differentiate using calculus-1 tools.
     
  6. May 8, 2015 #5
    This is not correct................
    The gamma function is defined for all ##x## and values of the function can be found for infinitely many rational arguments by the identity ##\Gamma(\frac{1}{2})=\sqrt{\pi}##
    Also note that this means that ##\Big(-\frac{1}{2}\Big)!=\sqrt{\pi}##. Values of the function exist for other rational numbers as well but they are somewhat complicated.
    Also the gamma function is continuous in the domain ##\mathbb{R}^+##
    See this stackexchange thread...................
     
    Last edited: May 8, 2015
  7. May 8, 2015 #6
    In-fact the value of the gamma function can also be computed for all negative integers.............
    See this paper by Fischer and Kilicman.............................
    But I believe it is not continuous in ##\mathbb {R}^-##.
     
  8. May 8, 2015 #7

    micromass

    User Avatar
    Staff Emeritus
    Science Advisor
    Education Advisor
    2016 Award

    The gamma function has poles at the negative integers. It is not defined there. And if it were to be defined, it would be ##\infty## (in the one-point compactification of ##\mathbb{C}##).

    It is. It is meromorphic, which means that it induces a continuous (even holomorphic) function ##\Gamma:\mathbb{C}\rightarrow \mathbb{C}_\infty##, where ##\mathbb{C}_\infty## is the Riemann sphere.
     
  9. May 8, 2015 #8

    pwsnafu

    User Avatar
    Science Advisor

    If you define the factorial as the gamma sure. Most texts don't. They define the factorial as a product, and show that the gamma function is an extension of the factorial.
     
  10. May 9, 2015 #9
    Sorry.............that was a silly error on my part..............
    Perhaps I should have been a little more careful.
    What you said is perfectly true, in the classical sense the gamma function is not defined for negative integers.....................
    Please have a look at the link i provided ...............
    [It's sort of like an extended gamma function, obtained by defining the gamma function in terms of a "neutrix".]
    While teaching this approach is more intuitive and often historically accurate, however, in practice, the general version (what maybe called the extended version) is always preferred as a definition. So perhaps my reply should have been something like, now that you know about the gamma function the answer will be the derivative of the gamma function........................
     
  11. May 9, 2015 #10

    pwsnafu

    User Avatar
    Science Advisor

    For people who are interested the paper uses neutrix calculus, which concerns taking diverging limits/series/integrals and removing the "infinite part" of it. The idea is that ##G## is a group of functions under addition and define ##N## a subgroup such that the only constant function contained is the zero function. N is the called the "neutrix" and the elements of N are called "negligible". The limits are then calculated modulo N.

    Neurtix calculus sees a lot of use in generalized functions (because it was Hadamard's work that started this technique) and you see it when defining intrinsic product of Schwartz distributions. I'm told QFT uses it, but I'm not a physicist so I can't say anything about that.
     
    Last edited: May 9, 2015
  12. May 11, 2015 #11
    Thanks to all who helped me.

    but please can you give me the derivative formula??
     
  13. Jun 19, 2015 #12
    do the exponent short cut or you can find the limit of the function as Δx→0.
    da/dh= 23b7112ec7aa5d19157cf84bd3b392e8.png
     
  14. Jun 19, 2015 #13

    FactChecker

    User Avatar
    Science Advisor
    Gold Member

    You can not say that the gamma function and factorial are the same function. They are not defined on the same domain or in the same way. Just because gamma is an extension of factorial does not mean that factorial is more than its original, simple definition.
     
  15. Jun 20, 2015 #14
    Not continuous
     
  16. Jun 21, 2015 #15

    WWGD

    User Avatar
    Science Advisor
    Gold Member

    Still, think of the differential quotient. If x! is defined only on the integers, what is then ##f(x+h) , h \rightarrow 0## ?
     
  17. Jun 24, 2015 #16

    phion

    User Avatar
    Gold Member

    Wolfram Alpha states the derivative of [itex]x![/itex] is [itex]\Gamma (x+1) \psi^{0}(x+1)[/itex].
     
  18. Jun 24, 2015 #17

    HallsofIvy

    User Avatar
    Staff Emeritus
    Science Advisor

    I'm sorry to hear that! Yes, for n an integer, [itex]\Gamma(n)= (n- 1)![/itex] but I would NOT agree that the factorial is the gamma function. As FactChecker said, they are different functions that happen to have a simple relationship.
     
  19. Jun 25, 2015 #18
    For small x it can be a poor approximation. I never thought about this being differentiable. Cool thought.
     
  20. Jun 26, 2015 #19
    Friend it is not that easy to solve.
    But i will try.
     
  21. Jun 26, 2015 #20
    Does the wolfram alpha show the steps??
    It usually does, but i do not think that it will show me the steps only the formula.
    Again i want to thank you all.
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook




Similar Discussions: What is the derivative of x! ?
  1. Derivative of |x| (Replies: 5)

  2. Derivative of x! (Replies: 6)

  3. Derivative of a^x (Replies: 13)

Loading...