1. Limited time only! Sign up for a free 30min personal tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Homework Help: What is the negation of the statement

  1. Dec 20, 2003 #1
    What is the negation of the statement "For each s in R, there exists an r in R such that if f(r) >0, then g(s) >0."

    The answer is "There exists an s in R such that for each r in R, f(r) >0 and g(s) <0."

    What is the general method to find the negation of any logical statement?

  2. jcsd
  3. Dec 20, 2003 #2

    Doc Al

    User Avatar

    Staff: Mentor

    While I can't give you a general method, you may find it useful to review the concept of contradictory statements from Boolean logic:

    All S is P is contradictory to Some S is not P

    No S is P is contradictory to Some S is P

    A statement and its contradictory cannot both be true (or both be false). Thus if "All S is P" is not true, then "Some S is not P" must be true. Of course, this only applies to statements that can be put in standard categorical form.
  4. Dec 20, 2003 #3


    User Avatar
    Staff Emeritus
    Science Advisor
    Gold Member

    Basically, you just want to distribute the negation. Use the laws

    [tex]\neg \forall x: P(x) = \exists x: \neg P(x)[/tex]
    [tex]\neg \exists x: P(x) = \forall x: \neg P(x)[/tex]
    [tex]\neg(x \wedge y) = \neg x \vee \neg y[/tex]
    [tex]\neg(x \vee y) = \neg x \wedge \neg y[/tex]
    [tex]\neg(x \Rightarrow y) = x \wedge \neg y[/tex]
    [tex]\neg(\neg x) = x[/tex]
    Last edited: Dec 20, 2003
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook