Understanding the Power of Zero: Exploring x^0 When x=0

  • Thread starter yungman
  • Start date
In summary, x^0 is undefined when x=0, but in the context of power series, it is often written as a0x^0 to represent the constant term and is understood to be equal to 1 for all x.
  • #1
yungman
5,718
240
What is [tex]x^0[/tex] when x=0?

My thinking [tex]0^0=1[/tex]

Am I correct? Why?
 
Last edited:
Physics news on Phys.org
  • #2
Undefined!
 
  • #3
00 is poorly defined. Its value depends on which zero in the expression in subject to a limit. In you case, you want to take

[tex]\lim_{x\to0}x^0[/tex]

Note that x never reaches 0, as in your question.
 
  • #4
I asked because I am working on this:

Defined: [tex]P_k(x)=\frac{1}{2^k}\sum_{m=0}^M (-1)^m \frac{(2k-2m)!}{m!(k-m)!(k-2m)!} x^{k-2m}[/tex]

[tex]M=\frac{n}{2}[/tex] if n is even integer.

Question: Prove [tex]P_{2n}(0)=(-1)^n\frac{2n)!}{2^{2n}(n!)^2}[/tex] using formula above.

Since k=2n is even

[tex]\Rightarrow M=\frac{2n}{2}=n[/tex]

Substitude k=2n

[tex]\Rightarrow P_{2n}(x)=\frac{1}{2^{2n}}\sum_{m=0}^n (-1)^m \frac{(4n-2m)!}{m!(2n-m)!(2n-2m)!} x^{2n-2m}[/tex]

[tex]\Rightarrow P_{2n}(0)=\frac{1}{2^{2n}}\sum_{m=0}^n (-1)^m \frac{(4n-2m)!}{m!(2n-m)!(2n-2m)!} 0^{2n-2m}[/tex]

The only way that this is possible is if [tex]0^{2n-2m}=1 \Rightarrow n=m[/tex]


Also according to Dr. Math:

http://mathforum.org/dr.math/faq/faq.0.to.0.power.html

Please help me on this one.

Thanks
 
  • #5
The problem is that you are mixing up two different kinds of exponentiation. (Alas, the difference is usually not mentioned. :frown:)


"xn" the monomial and "xn" the real number are different expressions describing different types of objects. However, monomials can be converted into functions, and expressions in a variable can be converted back and forth with expressions denoting a number, and most of the time it doesn't matter how you interpret things.


Alas, the monomial "x0" is the same as the monomial "1", and so the associated function is f(x)=1 with domain all of R.

But the real number "x0" (with exponentiation interpreted as real exponentiation) is only partially defined -- at best, the variable x must be restricted to nonzero reals.



Generally speaking, though, the only time you would ever encounter 00 is when you were working with monomials, which is why people sometimes adopt a convention that extends real exponentiation so that 00=1.
 
  • #6
Hurkyl said:
The problem is that you are mixing up two different kinds of exponentiation. (Alas, the difference is usually not mentioned. :frown:)


"xn" the monomial and "xn" the real number are different expressions describing different types of objects. However, monomials can be converted into functions, and expressions in a variable can be converted back and forth with expressions denoting a number, and most of the time it doesn't matter how you interpret things.


Alas, the monomial "x0" is the same as the monomial "1", and so the associated function is f(x)=1 with domain all of R.

But the real number "x0" (with exponentiation interpreted as real exponentiation) is only partially defined -- at best, the variable x must be restricted to nonzero reals.



Generally speaking, though, the only time you would ever encounter 00 is when you were working with monomials, which is why people sometimes adopt a convention that extends real exponentiation so that 00=1.

Thanks for your reply. I am not familiar with monomial, what is it? Is it like a "non polynomial" ei. only have single power of x?

In my case,[tex]x^{2n-2m}[/tex] is not a real number, it is a monomial. so do you mean if n=m, then [tex]x^{2n-2m}=x^0[/tex] and if x=0, then x^0=1? Which in another word [tex]x^0=1[/tex] for all x in real number including 0. Am I getting it right?

Thanks
 
Last edited:
  • #7
I would say that [itex] 0^0 [/itex] is ill-defined. However, one compute the following limit [itex] \lim_{x\rightarrow 0} x^x [/itex] and end up with 1 as a result.
 
  • #8
In the context of power series, just take x0 to mean 1 for all x. The constant term is often written as a0x0 so you don't have to keep breaking out the constant term separately from the rest of the series, but it's understood it's just a constant. You're not actually taking x to the zeroth power there.
 
  • #9
Thanks guys.

It make sense to me that[tex]x^0=1[/tex] for all x including 0.
 

1. What is x^0 when x=0?

When x is raised to the power of 0, the result is always 1 regardless of the value of x. Therefore, x^0 = 1 when x=0.

2. Is x^0 undefined when x=0?

No, x^0 is not undefined when x=0. As stated earlier, any number raised to the power of 0 is equal to 1, so x^0 = 1 when x=0.

3. Why is x^0 equal to 1 when x=0?

This is because any number raised to the power of 0 is defined as 1. This is a mathematical rule and applies to all numbers, including 0.

4. Can x^0 be any other value when x=0?

No, x^0 can only be equal to 1 when x=0. This is a fundamental mathematical rule and cannot be changed.

5. What is the purpose of raising a number to the power of 0?

Raising a number to the power of 0 has various applications in mathematics and science, such as simplifying equations, finding limits, and calculating derivatives. It is also a fundamental rule in exponent laws and helps in solving various problems in these fields.

Similar threads

  • Calculus and Beyond Homework Help
Replies
2
Views
169
  • Calculus and Beyond Homework Help
Replies
2
Views
538
  • Calculus and Beyond Homework Help
Replies
12
Views
698
  • Calculus and Beyond Homework Help
Replies
34
Views
2K
  • Calculus and Beyond Homework Help
Replies
2
Views
658
  • Calculus and Beyond Homework Help
Replies
1
Views
167
  • Calculus and Beyond Homework Help
Replies
24
Views
671
  • Calculus and Beyond Homework Help
Replies
7
Views
653
  • Calculus and Beyond Homework Help
Replies
13
Views
399
  • Calculus and Beyond Homework Help
Replies
26
Views
821
Back
Top