What's the reason behind the existence of mesons?

In summary: No sorry. That explains the _decay_ of mesons. The existence of mesons is/should be explained by QCD alone, without resourting to QED.Mesons are typically formed when quarks/antiquarks are involved in collisions. If one quark is impelled away from the other particles, QCD colour confinement prevents its escape. As the quark tries to escape, the strength of the colour force between the quark and the remaining particles (of net opposite color) does not decay by the inverse square law, but rather is believed to remain approximately constant. After a very short time, therefore, sufficient work will have been done against the strong attraction to enable a new quark/
  • #1
Vaibhav089
5
0
I've read that mesons consist of a quark and an antiquark. So, here's my question. Why don't the quark and the anti-quark annihilate with each other (like they ususally do)?
For example, the pi(0) meson consists of the up and the anti-up quark and the eta meson consists of the down and the anti-down quark and even the eta-prime meson which is made up of a strange and an anti-strange pair of quarks.
So, what's the reason for the existence of these mesons?
What causes a quark and an anti-quark to come into a bound state and form a meson?
 
Last edited:
Physics news on Phys.org
  • #2
The particles that you name do decay, right?

Consider that an electron-positron pair can also "live" for a short time in a bound state, called positronium.

Annihilation does occur, just not immediately.
 
  • #3
Apart from the neutral pion, all long-living mesons consist of a quark and a different antiquark, therefore they cannot decay via the electromagnetic interaction. They have to decay via the weak interaction, which is weak enough to give them some measurable lifetime and flight distance in experiments.
 
  • #4
jtbell said:
The particles that you name do decay, right?

Consider that an electron-positron pair can also "live" for a short time in a bound state, called positronium.

Annihilation does occur, just not immediately.

That is not the whole history. The quarks aniquilate to a pair of gluons, which can not exist in a free form, this is very different that electron positron to fotons.
 
  • #5
Quark-antiquark pairs can decay into a pair of photons. This is the dominant decay for the neutral pion, as it cannot decay via the strong interaction.
Heavier quark-antiquark pairs can annihilate via the strong interaction and produce lighter quarks, which is usually the dominant decay process.
 
  • #6
mfb said:
Quark-antiquark pairs can decay into a pair of photons. This is the dominant decay for the neutral pion, as it cannot decay via the strong interaction.
Heavier quark-antiquark pairs can annihilate via the strong interaction and produce lighter quarks, which is usually the dominant decay process.

Thanks! That pretty much explains it! :)
 
  • #7
Vaibhav089 said:
Thanks! That pretty much explains it! :)

No sorry. That explains the _decay_ of mesons. The existence of mesons is/should be explained by QCD alone, without resourting to QED.
 
  • #8
Mesons are typically formed when quarks/antiquarks are involved in collisions. If one quark is impelled away from the other particles, QCD colour confinement prevents its escape. As the quark tries to escape, the strength of the colour force between the quark and the remaining particles (of net opposite colour) does not decay by the inverse square law, but rather is believed to remain approximately constant. After a very short time, therefore, sufficient work will have been done against the strong attraction to enable a new quark/antiquark pair to be promoted from the vacuum. The anti-quark will have the opposite colour to the originally impelled quark so their colours now add up to zero and hence they can, finally, escape from the other particles.

But the newly created quark and anti-quark may or may not be the same flavour as the original quark. God plays dice. :-)
 

1. What are mesons?

Mesons are subatomic particles that are made up of a quark and an antiquark. They are a type of hadron, which are particles made up of quarks.

2. How were mesons discovered?

Mesons were first proposed by physicists Hideki Yukawa in 1935 as a way to explain the strong nuclear force. They were later discovered in cosmic ray experiments in 1947 by Cecil Powell and his team.

3. What is the reason behind the existence of mesons?

The existence of mesons is due to the strong nuclear force, which is one of the four fundamental forces of nature. This force binds quarks together to form protons and neutrons, and mesons are a result of this force acting between a quark and an antiquark.

4. What is the role of mesons in the Standard Model of particle physics?

Mesons are an important part of the Standard Model, which is the current theory that describes the fundamental particles and forces in the universe. They are classified as bosons and play a role in mediating the strong nuclear force between quarks.

5. Can mesons be created or destroyed?

Yes, mesons can be created or destroyed through interactions with other particles. They can be created in high-energy collisions, such as those in particle accelerators, and can also decay into other particles. However, the total number of mesons in the universe remains constant due to the law of conservation of energy and mass.

Similar threads

  • High Energy, Nuclear, Particle Physics
Replies
4
Views
2K
  • High Energy, Nuclear, Particle Physics
Replies
8
Views
2K
  • High Energy, Nuclear, Particle Physics
Replies
7
Views
1K
  • High Energy, Nuclear, Particle Physics
Replies
14
Views
3K
  • High Energy, Nuclear, Particle Physics
Replies
1
Views
1K
  • High Energy, Nuclear, Particle Physics
Replies
2
Views
1K
  • High Energy, Nuclear, Particle Physics
Replies
4
Views
2K
  • High Energy, Nuclear, Particle Physics
Replies
4
Views
2K
  • High Energy, Nuclear, Particle Physics
Replies
2
Views
1K
  • High Energy, Nuclear, Particle Physics
Replies
6
Views
1K
Back
Top