Where does the equation for gravitational force come from?

  • Thread starter Thread starter member 428835
  • Start date Start date
  • Tags Tags
    Gravity
AI Thread Summary
The equation {Gmm_e}/{r^2}={mgR^2/r^2} derives from the gravitational force formula F=G(m_e m)/r^2, where g is defined as the acceleration due to gravity at the Earth's surface. By substituting g with Gm_e/R^2, the equation simplifies to show that gravitational force can be approximated as constant near the Earth's surface. This approximation is valid because the variations in gravitational force with distance are negligible for small heights compared to the Earth's radius. The discussion emphasizes the importance of recognizing that higher-order terms in the Taylor series expansion of gravitational force become insignificant for practical calculations. Ultimately, this leads to the standard expression F=mg, where g is the acceleration due to gravity.
member 428835
hey all!

can anyone please explain where the equation {Gmm_e}/{r^2}={mgR^2/r^2} comes from given $$ma=Gmm_e/r^2$$ where G,m,m_e are the universal gravity constant, mass of object, Earth's mass and r is the distance from center of Earth's mass and R is radius of earth

thanks!
 
Physics news on Phys.org
joshmccraney said:
hey all!

can anyone please explain where the equation {Gmm_e}/{r^2}={mgR^2/r^2} comes from given $$ma=Gmm_e/r^2$$ where G,m,m_e are the universal gravity constant, mass of object, Earth's mass and r is the distance from center of Earth's mass and R is radius of earth

thanks!


Hi.

{Gmm_e}/{r^2}={mgR^2/r^2} means \frac{Gm_e}{R^2}=g
g is acccelation by Earth on the surface.
 
sweet springs said:
Hi.

{Gmm_e}/{r^2}={mgR^2/r^2} means \frac{Gm_e}{R^2}=g
g is acccelation by Earth on the surface.

yes this is true from algebraic manipulation but where does the identity come from?
 
Hi.

Acceleration on Earth's surface is given by g.
Force acting on mass m is mg by Newton's law.
 
sweet springs said:
Hi.

Acceleration on Earth's surface is given by g.
Force acting on mass m is mg by Newton's law.

yes, i understand this but where does the initial equality derive from?
 
<br /> F=\frac{GM_e m}{r^2} \\<br /> g=\frac{GM_e}{R_e^2} \\<br /> F=\frac{GM_e}{R_e^2} \frac{m R_e^2}{r^2} \Rightarrow F=\frac{gmR_e^2}{r^2}<br />
 
According to Newton's 2nd law we know that when the force of magnitude F act's upon an object of mass m it causes a body to accelerate at a. F=ma, in case of the gravitational force with is F=G\frac{mM}{r^2} it is usual to denote this acceleration g so:

F=mg=G\frac{mM}{r^2}, dividing by mass gives your expression.
 
joshmccraney said:
yes this is true from algebraic manipulation but where does the identity come from?
eh? we start by defining
\frac{Gm_e}{R^2}=g
Then we get the identity.
 
joshmccraney, the equality comes from the fact that close to the Earth's surface the gravitational force can be regarded as being approximately constant, i.e., as not depending on distance as measured from the ground.

It is easy to see this if you expand the gravitational force in a Taylor Series around R_{E}, where R_{E} is the radius of the Earth. If you do that, you will get the following series:

F(R_{E} + r ) = \frac{GM_e m}{( R_{E} + r )^2} = \frac{GM_e m}{R_{E}^2} + \frac{-2}{1!}\frac{GM_e m}{R_{E}^3}r + \frac{6}{2!}\frac{GM_e m}{R_{E}^4}r^2 + \centerdot\centerdot\centerdot

So this is an expression for the graviational force close to the Earth's surface, being r just the distance or height you measure from the ground.

Ok, we now we have this infinite series, which looks kind of weird because we wouldn't like to calculate infinite terms to get the actual value of the force near the planet's surface. But, take a closer look at the terms of the expansion and you will see that all of them can be written as the first term multiplied by a constant times ( \frac{r}{R_{E}} )^n, with n ≥ 1 being an integer. How big is that number? We know that R_{E} ≈ 6.4×10^6 m, and say r ≈ 100m. If you plug these values into the expression you get:

( \frac{r}{R_{E}} )^n = ( \frac{100}{6.4×10^6} )^n ≈ 10^{-5n}

This means that the second term of the expansion (for which n=1) will make a correction to the fisrt term on the fifth decimal place - it's a very small correction! For the third term ( n = 2 ), for instance, the correction is even smaller since it would take place on the tenth decimal place! We conclude then that all these terms (from the second on) are too small for our purposes, since we are interested on the graviational force on the surface's neighborhood. We can then discard these terms and keep just the first one:

F(R_{E} + r ) = \frac{GM_e m}{R_{E}^2}

Now, because we don't like to write all these constants, we simply define g = \frac{GM_e}{R_{E}^2} and get the famous expression we all learn in high school:

F = mgZag
 
Last edited:
Back
Top