Where x^x is a minimum

  • B
  • Thread starter cmb
  • Start date
  • Tags
    Minimum
  • #1

cmb

1,128
128
I've noticed that x^x is a minimum for x = e^-1

I put it as a high school problem because I presume it's one of those simple differential proofs/identities, but I can't really see how to get to e^-1. Too long since I did any calculus. Can someone please show me how to arrive at that?

How about (x^x)^x is a minimum for x = e^-(1/2)?

and ((x^x)^x)^x is a minimum for x = e^-(1/3)

I presume the pattern goes on.
 
Last edited:

Answers and Replies

  • #2
I've noticed that x^x is a minimum for x = e^-1

I put it as a high school problem because I presume it's one of those simple differential proofs/identities, but I can't really see how to get to e^-1. Too long since I did any calculus. Can someone please show me how to arrive at that?

How about (x^x)^x is a minimum for x = e^-(1/2)?

and ((x^x)^x)^x is a minimum for x = e^-(1/3)

I presume the pattern goes on.
How did you find those minima? And what do you remember about the properties of local extrema?
 
  • #3
If you're asking me to differentiate and find the turning point, sure, I just don't know how to do that.

I did this with a calculator.

In the meantime, it is curious that;-

(x^x) is NOT a minimum for the lowest possible x
BUT
if y=(x^x) then; (y^y) IS a minimum for the lowest possible y

(i.e. (x^x)^(x^x) IS a minimum for the lowest possible (x^x) but NOT the lowest possible x)

Can calculus show that too? I'm just no good at calculus.
 
  • #4
If you're asking me to differentiate and find the turning point, sure, I just don't know how to do that.

I did this with a calculator.

In the meantime, it is curious that;-

(x^x) is NOT a minimum for the lowest possible x
BUT
if y=(x^x) then; (y^y) IS a minimum for the lowest possible y

(i.e. (x^x)^(x^x) IS a minimum for the lowest possible (x^x) but NOT the lowest possible x)

Can calculus show that too? I'm just no good at calculus.

You can find the method for differentiating ##x^x## on line. There are several videos showing how it's done.

The minimum is when ##x = 1/e##.

If ##y = x^x## then the minimum of ##y^y## is when ##y = 1/e##, hence ##x^x = 1/e##.

This can be simplified to ##x \ln x = -1##, which is a transcendental equation and can ot be solved numerically.
 
  • #5
I've noticed that x^x is a minimum for x = e^-1

I put it as a high school problem because I presume it's one of those simple differential proofs/identities, but I can't really see how to get to e^-1. Too long since I did any calculus. Can someone please show me how to arrive at that?

How about (x^x)^x is a minimum for x = e^-(1/2)?

and ((x^x)^x)^x is a minimum for x = e^-(1/3)

I presume the pattern goes on.

Yes, this is not too hard to prove using the same technique as minimizing ##x^x##.
 

Suggested for: Where x^x is a minimum

Replies
2
Views
916
Replies
3
Views
668
Replies
3
Views
465
Replies
4
Views
203
Replies
4
Views
674
Replies
6
Views
690
Replies
5
Views
825
Back
Top