Which General Purpose Solver is Recommended for Optimisation Problems?

  • Thread starter Thread starter jon535
  • Start date Start date
  • Tags Tags
    General
AI Thread Summary
Mathematica 6.0 is recommended as a general-purpose solver for optimization problems, particularly for those needing to perform constrained nonlinear optimization. Users can utilize the maximize and minimize commands to handle complex profit functions and constraints effectively. An example provided illustrates maximizing profit with specific constraints on item prices, demonstrating Mathematica's capability to yield precise results. The solver integrates well with Excel, making it user-friendly for those familiar with spreadsheet software. Overall, Mathematica 6.0 is highlighted as a powerful alternative to Excel's Solver add-in for optimization tasks.
jon535
Messages
1
Reaction score
0
Can anyone recommend a good general purpose solver for optimisation problems. E.g. something better than Excels' Solver add-in. I'm looking for something that is relatively quick and easy to use, and prefereably can be made to work with Excel spreadsheets without too much effort.

Thanks..
 
Mathematics news on Phys.org
Mathematica 6.0.

You can do constrained nonlinear optimization with the maximize and minimize command.

For example, I want to maximize a profit function of two variables that is not linear subject to the constraints on two item prices, p1 and p2:

constraint 1
region of viable prices that leads to non-negative demand:
10395 \text{p1}+5150\geq 9983 \text{p2}\land \left(\left(\text{p1}>\frac{3000037}{199980}\land 10 \text{p1}\leq 37 \text{p2}+\frac{3000037}{19998}\right)\lor \left(\text{p2}\geq 0\land 0\leq \text{p1}\land \text{p1}\leq \frac{3000037}{199980}\right)\right)

constraint 2
budget constraint is equivalent to:
236059065 \text{p1}=921404813 \text{p2}+1676144666


And the approximate profit function:
-1.31380\times 10^6+133216. \text{p1}-5934.12 \text{p1}^2-172176. \text{p2}+22612.1 \text{p1} \text{p2}-629.842 \text{p2}^2


So the command I enter is this:
\text{Maximize}\left[\left\{profit[p1,p2],10395 \text{p1}+5150\geq 9983 \text{p2}\land \left(\left(\text{p1}>\frac{3000037}{199980}\land 10 \text{p1}\leq 37 \text{p2}+\frac{3000037}{19998}\right)\lor \left(\text{p2}\geq 0\land 0\leq \text{p1}\land \text{p1}\leq \frac{3000037}{199980}\right)\right),-\frac{20 (236059065 \text{p1}-921404813 \text{p2}-7017594666)}{106829}=1000000\right\},\{\text{p1},\text{p2}\}]
The list is of the form {profit[p1,p2], constraint 1, constraint 2} and it gives the EXACT answer which is really long but can be approximated by throwing //N after it.
\{2.22971\times 10^6,\{\text{p1}\to 133.135,\text{p2}\to 32.2893\}\}So for my fictitious company, the max profit will be about 2.2 million dollars, achieved when the price of the first item is 133.14 and the other is 32.29. Incidentally, this was a basic model of a company that sells a hardcover and softcover edition of a book, the cheaper one being the latter of course.

In a word: Mathematica 6.0.
 
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top