Why isn't the constant force problem in QM classes?

  • Thread starter pellman
  • Start date
666
2

Main Question or Discussion Point

I have not been able to find the quantum constant force problem in the various QM texts that I have checked. I am certain it was not covered in any of the classes I took. Why is that? I would think it would be next thing covered after free particles.
 

Answers and Replies

dextercioby
Science Advisor
Homework Helper
Insights Author
12,965
536
There's no such thing as "force" in QM.

Daniel.

P.S. A linearly coordinate depending potential energy operator (in the Schrödinger picture, Dirac fomulation) (let's say coming from a constant and homogenous gravitational field of a massive pointlike particle) has a discrete spectrum of eigenvalues and the Airy functions as eigenfunctions.
 
85
0
You mean solving of Schrodinger equation with a constant force?
 
dextercioby
Science Advisor
Homework Helper
Insights Author
12,965
536
There's no force in the SE, get over it.

Daniel.
 
85
0
Physically, u just need to have a position dependent potential.
 
Gokul43201
Staff Emeritus
Science Advisor
Gold Member
6,987
14
Have you never come across a triangular well ? I think that's what you are looking for.
 
dextercioby
Science Advisor
Homework Helper
Insights Author
12,965
536
QMrocks said:
Physically, u just need to have a position dependent potential.
Not necessarily. Think of a free particle acted upon by a time dependent perturbation to the Hamiltonian.

Daniel.
 
James R
Science Advisor
Homework Helper
Gold Member
600
15
There's no force in the SE, get over it.
But [itex]F = -\nabla U[/itex]

and I believe U appears in the Schrodinger equation.
 
MalleusScientiarum
This is true; however as you know the non-relativistic Schrodinger equation is a scalar-valued equation. To be analogous to Newton's laws directly, you would have to have a vector-valued function in a differential equation that becomes the Schrodinger equation with some mathematical trickery. If you want to follow the classical prescription.
 
vanesch
Staff Emeritus
Science Advisor
Gold Member
5,007
16
pellman said:
I have not been able to find the quantum constant force problem in the various QM texts that I have checked. I am certain it was not covered in any of the classes I took. Why is that? I would think it would be next thing covered after free particles.
It is the triangular potential, and it is used, because the earth gravity field (near its surface) does this. I have a collegue here at the ILL which plays with bouncing cold neutrons in the gravity field and he studies their quantum properties, V. Nesvizhevsky. Do a search on his name, you'll find some papers about it.

cheers,
Patrick.
 
85
0
My lecturer worked out the problem of Schrodinger equation with constant force term (i.e FX, where F is a the constant value of the force and X is the postition operator) in his notes, just by using the Heisenberg equation of motion.

Also in electron transport problems in devices, one have to deal with electron transport with a triagular potential, but with open boundary.
 
85
0
dextercioby said:
There's no such thing as "force" in QM.

Daniel.

P.S. A linearly coordinate depending potential energy operator (in the Schrödinger picture, Dirac fomulation) (let's say coming from a constant and homogenous gravitational field of a massive pointlike particle) has a discrete spectrum of eigenvalues and the Airy functions as eigenfunctions.
Sorry, i do not understand this concept. Does using the concept of 'force' (as in the gradient of potential V) in QM leads to serious contradictions in theory? Maybe when one try to deal with vector potential A in EM?
 
dextercioby
Science Advisor
Homework Helper
Insights Author
12,965
536
There is no force, there are only observables which are mathematical objects (1). "Force" is the key concept in the newtonian formulation of classical mechanics. However, to apply the quantization scheme proposed by Dirac (2), on has to use the Hamiltonian formulation of classical dynamics. J.Schwinger (3) proposed a construction which starts from the Lagangian action. However, classically, before quantization, such concepts as "momentum, force, acceleration, velocity" are basically useless when applying the quantization postulate.

Daniel

Notes
(1) densly defined selfadjoint linear operators acting on the (rigged, if unbounded) separable Hilbert space of states.
(2) Graded Dirac bracket on the reduced phase space goes to [tex] \frac{1}{i\hbar} [/tex] times graded Lie gracket.
(3) See R. Newton "Quantum Physics for Graduate Students", Springer Verlag.
 
convert it into potential

Constant force can be treated as linear potential. Then you can solve it sectionally. A similar problem has been investigated: V(x)=ABS(x). The solution to this potential is just Airy functions. But it doesn't have as much practical value as the ones show up in QM books(like oscillator potential and coulomb potential) and usully linear effect could be easily dealt with perturbation theory.You can check it in some mathematical handbook for Airy functions.
 
ZapperZ
Staff Emeritus
Science Advisor
Education Advisor
Insights Author
2018 Award
35,222
4,039
Observable said:
Constant force can be treated as linear potential. Then you can solve it sectionally. A similar problem has been investigated: V(x)=ABS(x). The solution to this potential is just Airy functions. But it doesn't have as much practical value as the ones show up in QM books(like oscillator potential and coulomb potential) and usully linear effect could be easily dealt with perturbation theory.You can check it in some mathematical handbook for Airy functions.
Surprisingly enough, the linear potential IS quite widely used, especially in many tunneling barrier model. One of the most common application is in the Fowler-Nordheim model of field emission (see, for example, http://ece-www.colorado.edu/~bart/book/msfield.htm). The simplest approximation to such a phenomenon is a triangular barrier. This is the model most people use to describe field emission, and if you know what that is, you'll know that your plasma screen and many other devices make use of this effect.

Zz.
 
ZapperZ said:
Surprisingly enough, the linear potential IS quite widely used, especially in many tunneling barrier model. One of the most common application is in the Fowler-Nordheim model of field emission (see, for example, http://ece-www.colorado.edu/~bart/book/msfield.htm). The simplest approximation to such a phenomenon is a triangular barrier. This is the model most people use to describe field emission, and if you know what that is, you'll know that your plasma screen and many other devices make use of this effect.

Zz.
I think those applications are actually treated by WKB approximation, so comes the linear potential
 
ZapperZ
Staff Emeritus
Science Advisor
Education Advisor
Insights Author
2018 Award
35,222
4,039
Observable said:
I think those applications are actually treated by WKB approximation, so comes the linear potential
Yes, but it is STILL a linear potential barrier.

The WKB approximation simply allows one to already "pre-determine" the wavefunction, rather than solving for one explicitly. In many cases, this is a detail that isn't necessary since all one cares about is the transmission probability that determine the current density. Thus, the WKB wavefunction is good enough.

Zz.
 
Gokul43201
Staff Emeritus
Science Advisor
Gold Member
6,987
14
Besides FETs, there's a whole host of other places where you see approximations to triangular wells or linear potentials - in modulation doped heterostructures, metal-semiconductor interfaces, biased junctions, etc.

And in most of these places, the linearity of the potential does not come out of the approximation used to model the system (in any case, such an approximation is chosen for a reason) but is the expected/designed profile.
 
aav
15
0
pellman said:
I have not been able to find the quantum constant force problem in the various QM texts that I have checked.
See J. J. Sakurai, Modern Quantum Mechanics, revised ed. Problem 24, Chapter 2. :smile:
 
Gokul43201
Staff Emeritus
Science Advisor
Gold Member
6,987
14
aav said:
See J. J. Sakurai, Modern Quantum Mechanics, revised ed. Problem 24, Chapter 2. :smile:
And the bit about gravity-induced interference between neutron beams (also in Ch. 2) :bugeye:
 
Kane O'Donnell
Science Advisor
124
0
Observable said:
I think those applications are actually treated by WKB approximation, so comes the linear potential
I should point out here that although almost everyone does use the WKB approximation in these cases, there has been a bit of a move in recent times to be more cautious in the application of the FN equation to arrays of emitters. Look at K Jensen's papers on FE - see especially his chapter in Vacuum Microelectronics.
 
ZapperZ
Staff Emeritus
Science Advisor
Education Advisor
Insights Author
2018 Award
35,222
4,039
Kane O'Donnell said:
I should point out here that although almost everyone does use the WKB approximation in these cases, there has been a bit of a move in recent times to be more cautious in the application of the FN equation to arrays of emitters. Look at K Jensen's papers on FE - see especially his chapter in Vacuum Microelectronics.
Yes, I'm aware of that, since I've talked to him a few times and have been looking into why people are using the FN model BEYOND the region of applicability, such as in a high-gradient photoinjector.

I think Kevin and I share a common "bond" - we're both refugees from condensed matter working in accelerator physics. :)

Zz.
 
889
25
Regardig what most of you have said:

is acceleration and mass observables? If so, why force is not an observable ?
Even in Heisenberg picture, equations with operators like force never show up?
 

Related Threads for: Why isn't the constant force problem in QM classes?

Replies
16
Views
3K
Replies
4
Views
2K
  • Last Post
Replies
3
Views
646
  • Last Post
Replies
17
Views
3K
  • Last Post
Replies
4
Views
1K
Top