- #26
- 205
- 101
Hello paisiello2. Is the ground force well located?. I've considered it as opposite to [itex]\vec{F}_{yAC}[/itex] and [itex]m_{C}\vec{g}[/itex], as shown in diagram at message #19. And I've considered [itex]\vec{F}_{yAC}[/itex] and [itex]m_{C}\vec{g}[/itex] as parallel forces. So the resultant module is the sum of modules, and the point of application is given by this ecuation: [itex]F_{yAC}\;d_1=m_{C}g\;d_2[/itex], where [itex]d_1[/itex] is the distance from [itex]\vec{F}_{yAC}[/itex] to the point of application of the sum of the two forces, and [itex]d_2[/itex] is also the distance from [itex]m_{C}\vec{g}[/itex] to the sum of the two forces. [itex]\vec{F}_{NC}[/itex] is opposite and equal in module. I've moved [itex]\vec{F}_{yAC}[/itex] and [itex]m_{C}\vec{g}[/itex] along their line of action to the ground, where the ground acts.
The center of mass is at the center of simmetry. It can be calculated by polar integration: consider a circular sector with angle [itex]\pi/3[/itex] wich axis of simmetry is [itex]X[/itex] axis. The coordenate [itex]Y[/itex] is zero, and [itex]X[/itex] coordenate is:
[itex]\displaystyle\frac{1}{\frac{\pi}{6}(r_1^2-r_0^2)}\displaystyle\int_{r_0}^{r_1}\int_{-\pi/6}^{\pi/6}\rho^2\cos\theta\;d\theta\;d\rho[/itex]
[itex]r_1=2[/itex], and [itex]r_0=1[/itex], so the result is approximately 1.49.
Regarding the total torque, the piece named [itex]C[/itex] might rotate, given the enough weight to the piece [itex]A[/itex], around the point [itex]O[/itex], but it is not the case: The arch with which we are working is a three pieces arch, same in shape and weight. When I say, for example, that piece [itex]A[/itex] weights 0.5, it could mean newtons or pounds; it could be expressed to scale, or not. When I draw the arch from 1 to 2, it could be any measure: feet, meters...the arch works. I will do the calculations:
[itex]\vec{M}_O(\vec{F}_{AC})=\vec{M}_O(\overrightarrow{F_x}_{AC})+\vec{M}_O(\overrightarrow{F_y}_{AC})[/itex];
[itex]\vec{F}_{AC}=(1'18-0'75,1'05-1'3)=(0'43,-0'25)[/itex];
[itex]\overrightarrow{OM}=(0'75-2,1'3-0)=(-1'25,1'3)[/itex];
[itex]\vec{M}_{O}
(\vec{F}_{AC})=\overrightarrow{OM}\land{\vec{F}_{AC}}=\begin{vmatrix} \vec{i}&\vec{j}&\vec{k}\\-1'25&1'3&0\\0'43&-0'25&0\end{vmatrix}=-0'25\vec{k}[/itex].
[itex]\overrightarrow{ON}=(1'3-2,0'75-0)=(-0'7,0'75)[/itex];
[itex]m_{C}\vec{g}=(1'3-1'3,0'25-0'75)=(0,-0'5)[/itex];
[itex]\vec{M}_{O}(m_{C}\vec{g})=\overrightarrow{ON}\land{m_{C}\vec{g}}=\begin{vmatrix}\vec i&\vec{j}&\vec{k}\\-0'7&0'75&0\\0&-0'5&0\end{vmatrix}=0'35\vec{k}[/itex].
The ground force restrains the counterclockwise rotation, so the total torque is [itex]\vec{0}[/itex]
The center of mass is at the center of simmetry. It can be calculated by polar integration: consider a circular sector with angle [itex]\pi/3[/itex] wich axis of simmetry is [itex]X[/itex] axis. The coordenate [itex]Y[/itex] is zero, and [itex]X[/itex] coordenate is:
[itex]\displaystyle\frac{1}{\frac{\pi}{6}(r_1^2-r_0^2)}\displaystyle\int_{r_0}^{r_1}\int_{-\pi/6}^{\pi/6}\rho^2\cos\theta\;d\theta\;d\rho[/itex]
[itex]r_1=2[/itex], and [itex]r_0=1[/itex], so the result is approximately 1.49.
Regarding the total torque, the piece named [itex]C[/itex] might rotate, given the enough weight to the piece [itex]A[/itex], around the point [itex]O[/itex], but it is not the case: The arch with which we are working is a three pieces arch, same in shape and weight. When I say, for example, that piece [itex]A[/itex] weights 0.5, it could mean newtons or pounds; it could be expressed to scale, or not. When I draw the arch from 1 to 2, it could be any measure: feet, meters...the arch works. I will do the calculations:
[itex]\vec{M}_O(\vec{F}_{AC})=\vec{M}_O(\overrightarrow{F_x}_{AC})+\vec{M}_O(\overrightarrow{F_y}_{AC})[/itex];
[itex]\vec{F}_{AC}=(1'18-0'75,1'05-1'3)=(0'43,-0'25)[/itex];
[itex]\overrightarrow{OM}=(0'75-2,1'3-0)=(-1'25,1'3)[/itex];
[itex]\vec{M}_{O}
(\vec{F}_{AC})=\overrightarrow{OM}\land{\vec{F}_{AC}}=\begin{vmatrix} \vec{i}&\vec{j}&\vec{k}\\-1'25&1'3&0\\0'43&-0'25&0\end{vmatrix}=-0'25\vec{k}[/itex].
[itex]\overrightarrow{ON}=(1'3-2,0'75-0)=(-0'7,0'75)[/itex];
[itex]m_{C}\vec{g}=(1'3-1'3,0'25-0'75)=(0,-0'5)[/itex];
[itex]\vec{M}_{O}(m_{C}\vec{g})=\overrightarrow{ON}\land{m_{C}\vec{g}}=\begin{vmatrix}\vec i&\vec{j}&\vec{k}\\-0'7&0'75&0\\0&-0'5&0\end{vmatrix}=0'35\vec{k}[/itex].
The ground force restrains the counterclockwise rotation, so the total torque is [itex]\vec{0}[/itex]
Last edited: