Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Wick rotation and Minkowski/Euclidean space

  1. Feb 10, 2013 #1
    Hello, I was wondering why in integrals such as
    \int d^4k F(k^2)
    where [tex] k^2 = (k^0)^2 - |\vec{k}|^2 [/tex] ranges from -∞ to ∞, once the Wick-rotation is performed, we have [tex] -k^2_E = -(k^0_E)^2 - |\vec{k}_E|^2 [/tex] which lies in the (-∞,0) interval ... So, the contribution which lies in the part where [tex] k^2 >0[/tex] it seems that fades away. This function would have even poles. It is still a bit counter-intuitive for me that this part just fades away.

    I guess we could shift the space-variables as [tex] \vec{k} \rightarrow \vec{k+k_0} [/tex] so this always lays in the euclidean space so to say. Anyway I am not sure, if this shift is always allowed.

    Asides, things get more annoying for me if we have other four-vectors in the function, appart that the loop variable, which are Minkowskian, i.e. [tex] F((k+q)^2,(k-p)^2) [/tex] where [tex] q^2 = m^2, \ p^2 = M^2 [/tex] (both are positive quantities) ...

    I find this kind of examples in triangle loops diagrams where the function F(k,q,..) is the form factor, and I this form factor is supposed to be the in the Spacelike or Euclidean region ...

    Thanks in advance!
  2. jcsd
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Can you offer guidance or do you also need help?
Draft saved Draft deleted

Similar Discussions: Wick rotation and Minkowski/Euclidean space
  1. Wick Rotation (Replies: 2)

  2. Wick rotation (Replies: 3)